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Abstract

A search for the CP-violating electric dipole (E1) direct emission contribution to

the KL → π+π−γ decay is performed using data from the 1997 KTeV/E832 ex-

periment. Because the KL → π+π−γ decay mode is massively dominated by the

CP-violating inner bremsstrahlung (IB) and the CP-conserving magnetic dipole

(M1) direct emission processes, previous analyses have neglected the E1 contribu-

tion. Therefore, this measurement is the first attempt to directly quantify the size

of the E1 decay process. This E1 transition is one of the very few CP-violating pro-

cesses that is accessible to experiment and, in principle, will produce new insights

into the structure of the neutral kaon.

The result of this analysis is that the E1 contribution is below the threshold of

sensitivity, and therefore an upper bound of |gE1| < 0.14 (90% CL) is reported.

In the process of obtaining this upper limit, high resolution measurements of

fit parameters (g̃M1 and a1

a2
) associated with the size and shape of the M1 direct

emission peak are also extracted. The fit results for these parameters:

g̃M1 = 1.229 ± 0.035 (stat) ± 0.087 (syst)

a1

a2
= -0.733 ± 0.007 (stat) ± 0.014 (syst)

are in strong agreement with previous measurements.



Chapter 1

CP Violation and the
KL → π+π−γ Decay

1.1 Introduction and Motivation

The field of high energy physics is a relatively young science. Although it is tech-

nically said to have begun with the discovery of the electron at the end of the

19th century, the field of particle physics did not really take off until the advent of

particle accelerators in the 1950s.

Suddenly, a veritable managerie of particles were being produced, and it proved

quite challenging to make sense of them all. One powerful method of grouping these

seemingly-disparate particles was to exploit the symmetries (which, by Noether’s

theorem, corresponded to physical conservation laws) that they obeyed.

As the field matured, theoretical and experimental efforts shifted from focusing

on the large groups of particles that did obey the symmetries to focusing on those

few and far between specimens that apparently did not, since it was clear that such

particles held the key to newer and better understanding.

Two particularly important symmetries during this time were charge conjuga-

tion (C) and parity (P). Charge conjugation transformed a particle into its anti-

particle ”partner”; for example, the transformation from an electron to a positron.

1



2

Parity performed the spatial inversion transformation ~X → − ~X and was often

referred to as the “mirror inversion” transformation.

Although weak decays were known to violate these symmetries individually,

it was originally thought that the combination of C and P together was a valid

symmetry. This was dramatically disproved in the 1964 experiment by Christenson,

Cronin, Fitch, and Turley [1] that eventually lead to the important idea of kaon

mixing1. Insights such as these would ultimately culminate, in the early 1970s, into

the so-called ”Standard Model” of high energy physics.

However, for all its many successes, the Standard Model is still not the entire

story. Although it has now been 40 years since the Cronin and Fitch experiment, the

mystery of CP violation has yet to be fully explained. As a result, the study of CP

violation continues to be one of the most fertile grounds to search for new physics

beyond the Standard Model. Moreover, CP violation appears to have extremely

profound cosmological consequences, as it is a leading candidate to help explain the

observed matter, anti-matter disparity in the universe.

1.2 Kaon Mixing and CP Violation

The strong force eigenstates of the K meson are given as

|K0 >= |s̄d > (1.1)

|K̄0 >= |d̄s > (1.2)

where K0 is the S = +1 strangeness eigenstate and K̄0 is the S = -1 eigenstate.

However, it was noted experimentally that the K0 decayed with two different life-

times:

τ [K0
(short) → 2π] = 0.9 × 10−10 sec

1this will be described in more detail later in the chapter
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τ [K0
(long) → 3π] = 0.5 × 10−7 sec

In other words, the strong interaction K0 particle suddenly seemed to become

two separate particles (defined as K1 and K2) under weak interaction decays [2].

The fact that the K̄0 particle behaved similarly led Gell-Mann [3] to realize

that the K1 and K2 could be written as CP eigenstates if they were comprised of

admixtures of K0 and K̄0 states. Specifically:

|K1 >=
1√
2
(|K0 > −|K̄0 >) , CP |K1 >= (+1)|K1 > (1.3)

|K2 >=
1√
2
(|K0 > +|K̄0 >) , CP |K2 >= (−1)|K2 > (1.4)

If CP were a perfect symmetry, the decays K1 → 2π and K2 → 3π would be allowed

and K1 → 3π and K2 → 2π would be forbidden.

When a landmark experiment [1] demonstrated that the long-lived kaon violated

CP conservation by decaying into a two pion state, it became clear that even the

K1 and K2 states were not sufficient to perfectly describe the neutral kaon system.

Instead, new states |ψ(t) > should be described as

|ψ(t) >= A(t)|K0 > +B(t)|K̄0 > (1.5)

which, as we shall seem allows for the possibility of mixing between the K1 and K2

states. Using a matrix formulation in which

|K0 >=

(
1
0

)
|K̄0 >=

(
0
1

)
(1.6)

we can express the final state |ψ(t) > as

|ψ(t) >=

(
A(t)
B(t)

)
(1.7)

The non-Hermitian net effective Hamiltonian for this system Heff is given by

Heff = H0 + HWeak (1.8)
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where H0 is the (strangeness conserving) strong and electromagnetic Hamiltonian

and HWeak is the weak decay Hamiltonian (which violates strangeness by |∆S| =

2) [4]. Since Heff is not Hermitian, it can be expressed as a linear combination of

two separate Hermitian matrices: a “mass matrix” M and a “decay matrix” Γ [5].

Heff = M − i

2
Γ =

(
M11 − i

2
Γ11 M12 − i

2
Γ12

M21 − i
2
Γ21 M22 − i

2
Γ22

)
(1.9)

CPT invariance of Heff
2 implies that

M11 = M22 ≡ M0

Γ11 = Γ22 ≡ Γ0
(1.10)

where M0 = MK0 = MK̄0 , and Γ0 is identified with the decay width of K0 and K̄0.

In addition, since M and Γ are Hermitian by construction, then M0 and Γ0 are both

real and M21 = M∗
12 and Γ21 = Γ∗

12. Thus equation (1.9) becomes

Heff =

(
M0 − i

2
Γ0 M12 − i

2
Γ12

M∗
12 − i

2
Γ∗

12 M0 − i
2
Γ0

)
(1.11)

Diagonalization of (1.11) immediately gives the explicit form of the physically

observed |KS > and |KL > states as

|KL >=
1√

1 + |ε|2

(
|K0 > +|K̄0 >√

2
+ ε

|K0 > −|K̄0 >√
2

)
(1.12)

|KS >=
1√

1 + |ε|2

(
|K0 > −|K̄0 >√

2
+ ε

|K0 > +|K̄0 >√
2

)
(1.13)

where ε =

√
M12 − i

2
Γ12 −

√
M∗

12 − i
2
Γ∗

12√
M12 − i

2
Γ12 +

√
M∗

12 − i
2
Γ∗

12

(1.14)

The appellations “KL” and “KS” are derived from the differing decay lifetimes

of the two states. KL is the “long-lived” (τL ≈ 5 · 10−8 s) kaon, and KS is the

“short-lived” (τS ≈ 9 · 10−11 s) kaon.
2It is possible to expand the derivation to account for CPT-violating effects, but for simplicity

we will confine our discussion to assuming CPT conservation.
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|KL > and |KS > can also be expressed in terms of the CP eigenstates as

|KL >=
1√

1 + |ε|2
(|K2 > +ε|K1 >) (1.15)

|KS >=
1√

1 + |ε|2
(|K2 > −ε|K1 >) (1.16)

Note that the above equations explicitly demonstrate CP violation in KL and

KS. If CP were conserved, then all of the M and Γ matrix elements would be real

( i.e. M∗
12 = M12 and Γ∗

12 = Γ12 ), and ε would vanish in equation (1.14). Hence,

|KS > would then exactly equal |K1 >, and |KL > would exactly equal |K2 >. In

practice, however, ε is small ( ∼ 2 ·10−3), but definitely non-zero, thus allowing the

CP-violating KS → 3π and KL → 2π decays to be observed.

Finally, for completeness, it is also important to note that all CP-violation

discussed in this chapter is the indirect CP-violation due to |K1 > and |K2 >

mixing. However, there is also a separate phenomenon known as direct CP-violation

in which the “forbidden” K1 → 3π and K2 → 2π decays explicitly occur. In this

particular decay, the direct CP violation contributions are expected to be much

smaller than the indirect contributions. As a result, any such direct CP violation

contributions are expected to be far beyond the sensitivity of this measurement and

will henceforth be neglected.

1.3 The KL → π+π−γ Matrix Element

The decay amplitudes for the decay KL(P ) → π+(p+)π−(p−)γ(k, ε) can be classi-

fied [6] into 3 groups
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(p+ · ε)(p− · k) − (p− · ε)(p+ · k)

(p+ · k)(p− · k)
(1.17a)

εµνρσp
ρ
+pσ

−kνεµ (1.17b)

(p+ · ε)(p− · k) − (p− · ε)(p+ · k) (1.17c)

where ε is the photon polarization vector, and P, p+, p−, and k are the 4-vector

momenta of the kaon, π+, π−, and photon, respectively.

These 3 forms (and their equivalents after kinematic substitution) are the only

possible ones that, up to third order in momenta, satisfy gauge invariance. Forms

1.17a and 1.17c correspond to first order electric transitions, while 1.17b corre-

sponds to first order magnetic transitions. From this, the complete matrix element

amplitude can be written [7, 8]

M =
efsε

µ

M4
K

(Iµ + Gµ + Mµ) (1.18)

where

Iµ = EIB[(p− · k)p+µ − (p+ · k)p−µ] (1.19)

Gµ = gE1[(P · k)p+µ − (p+ · k)Pµ] (1.20)

Mµ = gM1εµνρσk
νpρ

+pσ
− (1.21)

EIB =
η±M4

KfS

(p+ · k)(p− · k)|fS|
(1.22)

where fs is the KS → π+π− coupling constant, and η+− is a CP-violation parameter

related to the quantity ε defined in equation 1.14 by3

η+− = ε

(
1 +

ε
′

ε

)
≈ ε (1.23)

3For completeness, the quantity ε
′
is the direct CP violation counterpart to ε, where ε

′ ∼ 10−4ε



7

KL

� +

�

 � −

Inner Bremsstrahlung Emission

KL

� +

�

 � −

Direct Emission

Figure 1.1: Feynman diagrams of the processes contributing to the KL → π+π−γ
decay. Both the E1 and M1 decay contributions are direct emission processes.
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We can reexpress The E1 term, Gµ, using P = p+ + p− + k and noting that

k2 = M2
γ = 0, which gives

Gµ = Gµ + Hµ (1.24)

where

Gµ ≡ gE1[(p− · k)p+µ − (p+ · k)p−µ] (1.25)

Hµ ≡ gE1(p+ · k)kµ (1.26)

However, since it can easily be shown4 that

IµHµ = GµHµ = MµHµ = HµHµ = 0 (1.27)

it implies that the Hµ term makes no contribution to the final decay rate and hence

we can set Hµ = 0 in equation 1.24 with no loss of generality. Therefore we will

use Gµ in place of Gµ for the remainder of the derivation.

Note that the Gµ E1 term now manifestly has the same form as the (E0) inner

bremsstrahlung term (Iµ) defined in equation 1.19. This allows us to now convie-

niently reexpress the matrix element in terms of an electric( Jµ) and a magnetic

(Mµ) component

M =
efsε

µ

M4
K

(Jµ + Mµ) (1.28)

where

Jµ ≡ Iµ + Gµ = (EIB + gE1)[(p− · k)p+µ − (p+ · k)p−µ] (1.29)

Thus the matrix elment squared can be written

|M|2 = | efs

M4
K

|2
∑

ε

[εµ(Jµ + Mµ)]∗[εν(Jν + Mν)] (1.30)

4see next section
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Using the Ward Identity
∑

ε εµ∗εν → −gµν to sum over the polarizations [9] and

recalling that JµM
µ = 0, the expression becomes

|M|2 = | efs

M4
K

|2(|Jµ|2 + |Mµ|2) (1.31)

1.4 Evaluation of the Matrix Element in an Ex-

plicit Reference Frame

In order to calculate the differential decay rate, |M|2 has been evaluated in terms

of the two kinematic variables for this decay: ω (the photon energy in the π+π−γ

center of mass frame ) and θ (the angle between the photon and the π+ in the

π+π− center of mass).

The choice of the π+π− center of mass frame, in which ~p+ + ~p− ≡ 0, and the

alignment of the z-axis with the momentum of the original kaon, is particularly con-

vienient for evaluating the decay rate. With the further choice of coordinates such

that the X-Z plane aligns with the ~p+ momentum vector, many of the components5

of vectors pi
+, pi

−, and ki are zero. Specifically,

k1 = k2 = p2
+ = p2

− = 0 (1.32)

In addition, since |~p+| = |~p−| in this frame, the π+ and π− energies are related

by

E+ = E− =
1

2
Mππ (1.33)

Moreover, if we evaluate the 4-vector invariant P ·k in both the kaon and π+π−

center of mass frames, we get

5where i = (1,2,3) follows the usual convention of (x, y, z)
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P · k = MKω (1.34)

for the kaon CM frame and

P · k = MππEγ (1.35)

for the π+π− CM frame.

Setting 1.34 equal to 1.35, we immediately arrive at the following expression for

the photon energy (Eγ) in the π+π− CM frame:

Eγ =
ωMK

Mππ

(1.36)

Combining equation 1.36 with the fact that e.g.

|~p+| =
√

E2
+ − M2

+ =

[(
Mππ

2

)2

− M2
π

] 1
2

=
βMππ

2
(1.37)

we can write the invariant dot products p± · k in equation 1.29 as

p± · k =

(
MKω

2

)
(1 ∓ β cos θ) (1.38)

where

β ≡
(

1 − 4M2
π

M2
ππ

)2

=

(
1 − 4M2

π

M2
K − 2ωMK

)2

(1.39)

The electric term can then be expressed

Jµ = (EIB + gE1)

(
MKω

2

)
[(1 + β cos θ)p+µ − (1 − β cos θ)p−µ] (1.40)

where

EIB =
fs

|fs|

(
2MK

ω

)2
η+−

1 − β2 cos2 θ
(1.41)
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For the magnetic component, we expand the summation over kν in equation 1.21

to obtain

Mµ = gM1p
ρ
+pσ

−
(
εµ0ρσk

0 + εµ1ρσk
1 + εµ2ρσk

2 + εµ3ρσk
3
)

(1.42)

From equation 1.32, we know that the second and third terms are both zero. In

addition, since k0 = k3 = Eγ, we can rewrite equation 1.42 as

Mµ = gM1Eγp
ρ
+pσ

− (εµ0ρσ + εµ3ρσ) (1.43)

Performing a similar expansion over e.g. pρ
+ and exploiting the properties6 of the

totally anti-symmetric tensor εµνρσ, equation 1.42 reduces to the extremely compact

form

Mµ = (2gm1Eγp
0
+p1

+)δ̄2
µ (1.44)

where δ̄α
β is the Kronecker delta function7.

Note that equations (1.32) and (1.44), along with the fact that k · k = 0 in

any frame make it manifestly apparent that our assertion ( 1.27 ) in the previous

section must hold true.

1.5 The KL → π+π−γ Differential Decay Rate

The differential decay rate formula for a general 3-body decay with phase space

variables z1 and z2 is given by [10]

dΓ

dz1dz2

=

(
1

32π3

)
|M(z1, z2)|2 (1.45)

Substituting ω and cos θ for z1 and z2, this becomes

dΓ

dωd cos θ
=

(
1

32π3

)
|M(ω, cos θ)|2 (1.46)

6for example the fact that: εµ30σ = −εµ03σ = δ̄1
µδ̄2

σ − δ̄2
µδ̄1

σ
7Note the use of the bar over the “δ” of the Kronecker delta function, in order to distinguish

it from the pion phase shift angles δ0
0 and δ1

1 in the next section.
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Inserting equation 1.31 in for |M(ω, cos θ)|2, this becomes

dΓ

dωd cos θ
=

(
1

32π3

)
| efs

M4
K

|2(|Jµ|2 + |Mµ|2) (1.47)

Finally, we insert equations 1.36 , 1.40, and 1.44 to obtain the relatively simple

expression [11, 12]

dΓ

dωd cos θ
=

1

512π3

(
ω

MK

)3

β3

(
1 − 2ω

MK

)
sin2 θ

[
|EIB + gE1|2 + |gM1|2

]
(1.48)

Ironically, however, the same lack of a gE1,M1 interference term that gives 1.48

its compact form also reduces the E1 contribution to the final decay distribution.

Since theoretical estimates of gE1 imply that it is a very small (< 2.5%) correction [7]

to EIB, the IB,E1 interference term is expected to be the dominant E1 correction

term. Hence, the explicit form of |EIB + gE1| becomes crucial. The phases of the

three matrix element contributions are given by

δIB = Φ± + δ0
0(M

2
K) (1.49)

δE1 = Φ± + δM1 (1.50)

δM1 = δ1
1(M

2
ππ) (1.51)

where Φ± is the phase of η+− , and δ0
0 and δ1

1 are the standard pion scattering

phase shifts8 computed from experimental measurements of KL → π0π±e∓ν decays.

This leads to

|EIB + gE1|2 = |gE1|2 + |E2
IB| + 2|gE1||EIB| cos

[
δM1 − δ0

0(M
2
K)

]

= |ge1|2 + |EIB|2
[
1 +

2|gE1| sin[δ0
0(M

2
K) − δ1

1(M
2
ππ)]

|EIB|

]
(1.52)

8see section 9.7.2 for more details
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The M1 term will be expressed in terms of an amplitude g̃m1 and a vector form

factor as follows

|gM1| = g̃M1

[
1 +

a1

a2

M2
ρ − M2

K + 2MKω

]
(1.53)

Note that equation 1.52 clearly illustrates the difficulty in measuring |gE1| in

the KL → π+π−γ decay mode. Since |gE1|2 is predicted to be well below the

experimental sensitivity, then the measurement of |gE1| will hinge critically on the

ability of the likelihood fitter to resolve the
2|gE1| sin[δ0

0(M2
K)−δ1

1(M2
ππ)]

|EIB | term relative to

1.

Note that because |gE1| is a magnitude, the measured quantity in this analysis

is constrained to be greater than or equal to zero.

Henceforth, to avoid writing explicit absolute value symbols, we will use the

quantity “GE1” where

GE1 ≡ |gE1| (1.54)

to denote the measured E1 amplitude.



Chapter 2

The KTeV Experiment

2.1 Creation of the Neutral Kaon Beam

The KTeV experiment was located on a new beamline on the east side of the

existing Neutrino-Muon (NM) beamline at Fermi National Accelerator Laboratory

(Fermilab). The 1997 E832 run, which is the run relevant to this analysis, took

data from April to July 1997.

The name ”KTeV” is an acronym for ”kaons at the Tevatron” and actually en-

compasses two separate, but closely related, experiments: E799 and E832. The pri-

mary objective of E832 was to measure the direct CP-violation parameter Re(ε′/ε),

while E799 focused on measuring rare decays of the KL particle, such as KL →

π0e+e−. The two experiments were conducted in the same experimental hall and

used most of the same detectors.

The KTeV beam time was divided roughly equally between the two experiments.

The primary differences between the E799 and the E832 configurations were that

the E832 configuration included the regenerator and beryllium absorbers, and E799

had transition radiation detectors (TRDs) 1 installed downstream of the drift cham-

1these detectors used “transition radiation” (i.e. the radiation released by a charged particle
as it transitions across a boundary of two different indices of refraction) as a method of charged
particle discrimination. As mentioned above, they are not used in the E832 version of the exper-
iment.

14
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KTeV

Figure 2.1: Three-dimensional cutaway of the KTeV Detector. Components labeled
“E799” were not used in this analysis
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Figure 2.2: The E832 configuration of the KTeV Detector (plan view)
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bers.

2.1.1 The Primary Proton Beam

The heart of the Fermilab proton beam is the Tevatron, a circular proton-antiproton

ring roughly 6 km in circumference. The Tevatron delivered ”spills” of 5×1012 800

GeV protons to the NM beamline in 1 minute cycles. The first 40 seconds of the

cycle were used to accelerate the proton bunch in the Tevatron and was referred

to as ”off spill”. The beam was then extracted from the Tevatron, and sent to the

NM beamline for the remaining ( “on spill”) 20 seconds.

Each spill had an additional microstructure imposed by a 53 MHz RF signal of

the Tevatron such that on-spill protons arrived in 1-2 ns ”buckets” once every 19

ns. A derivative of the RF timing signal was also sent to KTeV to synchronize the

triggers with the incoming beam.

Once the proton beam was extracted from the Tevatron, the NM ”primary

beamline” magnets diverted the beam to the KTeV neutral beam production target.

The final focusing quadrupole magnets and steering dipoles focused the proton

beam size to ∼250 µm in both x and y and tilted the primary beam at a 4.9 mrad

downward angle (with respect to the secondary beam, as defined by the collimator

system). This beam angle was chosen to optimize the kaon-neutron ratio in the

neutral beam and to maximize the final kaon flux.

The KTeV neutral beam production target was a 3 mm square beryllium oxide

(BeO) rod, 30 cm long (1.1 interaction lengths). The center of the target defined

the origin for the z coordinate of the experiment. The z axis was aligned with the

collimated neutral kaon beam, the y axis was aligned with the vertical direction,

and the right-handed coordinate system was completed by defining the positive x

direction to be horizontal and to the left (as viewed by an observer gazing down-
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stream).

2.1.2 The NM2 Beamline Enclosure

The NM2 Beamline Enclosure consists of a series of ”sweeper” magnets, absorbers,

and collimators that are used to produce the final neutral beam from the secondary

beam produced by the interactions of the proton beam with the BeO target.

The first NM2 element encountered by the secondary beam was the ”target

sweeper”, a magnet centered about 2 m downstream of the target that imparted a

3800 MeV/c transverse momentum kick to the primary proton beam and deflected

it into a 4.5 m water-cooled copper block (the ”primary proton dump”). Just

downstream of the target sweeper was a second sweeper magnet, µ sweep 1, that

deflected muons out of the beamline. Two more sweepers, µ sweeps 2 and 3, were

used for similar purposes farther downstream.

The two common absorbers, the Beryllium absorber (Be absorber) and the lead

absorber (Pb absorber), removed undesired neutral particles. The Be absorber was

a 20 inch thick Be wall that attenuated neutrons, since neutrons have a higher

interaction cross-section in Be than kaons, while the 3 inch Pb absorber removed

photons.

Once the beam passed through the absorbers, it was defined by three collimators.

The first and most important of the three was the “primary” collimator, located

at z = 20m, which was comprised of a 2m long brass and steel block with square

tapered holes. The holes produced two separate neutral beams with their centers

separated by 1.6 mrad relative to the target. The second (“slab”) collimator was a

2m tapered stainless steel block positioned between the parallel beams about 18 m

farther downstream. Its primary function was to prevent scattered particles from

crossing from one beam to another.
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The third collimation element, at z = 85m, was the “defining” collimator. This

was a tungsten block with tapered square holes that set the final beam shape.

The combination of all these elements produced a neutral beam with a final beam

divergence of 0.5 mrad and a 3:1 neutron/KL ratio [14].

The final NM2 element that should be mentioned is the regenerator, which

regenerated KS from KL . It was 40 m downstream of the defining collimator (at

z = 125m) and alternated between the two neutral beams on each spill. However,

since this analysis used vacuum beam only, the regenerator was irrelevant to the

events in the particular data sample analyzed in this thesis2.

2.1.3 The Vacuum Decay Region

The kaon decay region was a 65m airtight steel enclosure operated at an internal

pressure of 1.0×10−6 torr. It was 45 cm in diameter at the upstream (z = 94 m) end

and 2.4m in diameter at the downstream (z = 158.9m) end. To withstand the 222kN

of integrated force exerted by atmospheric pressure outside the decay volume, the

vacuum window on the downstream end was made from a 7.6mm (0.00016 radiation

length) Kevlar weave. A layer of aluminized Mylar was laminated on the Kevlar

to minimize air permeability.

2.2 The KTeV Detector

2.2.1 The Calorimeter

The calorimeter [15] was one of the centerpieces of the KTeV experiment and was

essential to the KL → π+π−γ analysis, as it is the only component capable of

2except in the rare cases when regenerator events were scattered into the adjacent vacuum
beam. This effect will be discussed in section 9.4 along with the other backgrounds.
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Figure 2.3: The NM2 beam enclosure
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measuring photon energies and position. It consisted of 3100 blocks of pure Cesium

Iodide, arranged in a 1.9m x 1.9m square array. As a cost-savings measure, in both

crystal manufacture and in the accompanying electronic channels, two different CsI

block sizes were used.

The inner region of the detector, where resolution of position and cluster sepa-

ration are most critical, was composed of 2232 small (2.5cm x 2.5 cm) blocks, while

the outer region used 868 larger (5 cm x 5 cm) blocks. There were also two 15 cm

square holes in the center of the detector (see figure 2.4) that allowed the primary

kaon beams to pass through without damaging the crystals.

Each block, large or small, was 50 cm long (27 radiation lengths), so essentially

all photon energy was contained by the crystals. To compensate [16] for variations

in longitudinal scintillation response from block to block, each crystal was individ-

ually wrapped in 13 µm black or aluminized mylar, resulting in a block scintillator

response uniformity of about 5 percent. Since 50 cm of CsI corresponds to 1.4 nu-

clear interaction lengths, pions and muons typically deposited only a small fraction

of their energies in the calorimeter.

The light yield in a crystal was about 20 photoelectrons per MeV of deposited

energy. There were two components to the scintillation light: a ”fast” contribution

that peaked at 305 nm and fell off with a decay time of about 25 ns, and a ”slow”

contribution that peaked at 480 nm and decayed in about 1 µs. The CsI crystals

proved to be an excellent choice for the calorimeter, allowing it to attain a resolution

of

σE

E
= 0.0045 +

0.02√
E

(2.1)

where E is measured in GeV.
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Nevertheless, the crystals were not without disadvantage. Pure CsI, while pos-

sessed of exceptional scintillation and radiation hardness properties, is also fairly

soft and somewhat hygroscopic. Therefore, the calorimeter was contained in a

sealed metal enclosure called the ”blockhouse” that had its own air conditioning

and dehumidifier units to protect the crystals and cool the electronics.

The Calorimeter Readout

Each crystal was optically coupled to a photo-multiplier tube (PMT) via a glass

”cookie” and a disk of Schott UG-11 filter glass, which filtered out most of the slow

component of light. The large crystals were coupled to a 6-stage Hammatsu 1.5

R5330 PMT, while the smaller crystals used 5-stage 0.75 R5364 Hammatsu tubes.

The tubes ran at 900-1500V with a typical gain of about 5000.

The PMT dynode signal was shunted to the Etotal system in the L1 trigger,

while the anode signal was digitized and buffered locally by the digital photo-

multiplier tube (DPMT) board. The DPMT was comprised of an 8-bit flash analog-

to-digital converter (ADC) and two custom chips: the charge integrator and encoder

(QIE) and the driver-buffer-clock (DBC). The QIE divided the PMT signal current

among 8 capacitors, each receiving a different fraction of the current (I/2, I/4, I/8,

..., I/256). The charge across each capacitor was integrated and compared to a

reference voltage. This voltage was then digitized by the flash ADC and stored as

a mantissa, along with a 3-bit exponent for the voltage range. The QIE contained

4 such circuits that were filled in round-robin fashion for each RF bucket.

The mantissa, exponent, and QIE circuit number (”cap ID”) were all written to

a FIFO (first-in-first-out) buffer in the DBC. The buffer had a depth of 32 words

and was only read out if the L1 trigger was satisfied.
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Figure 2.4: Schematic of the KTeV CsI Calorimeter
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Calorimeter Calibration

A dye laser, capable of producing shaped pulses of UV light, was connected to each

individual crystal via optical fibers. During special runs [17] known as ”laser scans”,

the entire DPMT dynamic range was scanned by slowly turning a variable filter

wheel in front of the laser. The flashes were also sent to several highly linear and

stable PIN photodiodes, which provided an independent measure of the stability of

laser light amplitude.

The channel gains were calibrated using electrons from Ke3 events 3. Since the

ratio of energy to momentum (E/p) is approximately 1.0 for electrons, the charge

to energy ratio (Q/E) for each channel could be determined via an iterative process

using electron momentum information from the spectrometer.

2.2.2 The Magnetic Spectrometer

The spectrometer consisted of an analysis magnet and 4 drift chambers (DC 1-

4), with 2 chambers upstream of the magnet and 2 chambers downstream. A

helium bag was placed between each element to reduce the probability of multiple

scattering, photon conversions, and beam interactions in air. The relative positions

and dimensions of the components is summarized in table 2.1.

This configuration resulted in a resolution [13] of

σp

p
= (0.38 + 0.016P )% (2.2)

where P was measured in GeV/c.

3Ke3 is a commonly used “short-hand” term for the KL → π±e±ν decay
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Spectrometer Element z (m) Dimensions, x × y (m)

DC1 159.4 1.3 × 1.3
DC2 165.6 1.5 × 1.5

Analysis Magnet 170.0 2.9 × 2.0
DC3 174.6 1.6 × 1.6
DC4 180.5 1.8 × 1.8

Table 2.1: z positions and dimensions of KTEV spectrometer

The Analysis Magnet

The analysis magnet was a large dipole magnet that drew 1600 A of current and

generated a field strength of 2 kG in the vertical (y) direction. This produced a 412

MeV/c transverse momentum ”kick” along the horizontal (x) axis. The magnet

polarity was flipped once every one to two days to minimize any geometrical biases

in the detector.

The Drift Chambers

The drift chambers [18] were constructed using 100 µm diameter gold-plated alu-

minum for the cathode (field) wires and 25 µm diameter gold-plated tungsten for

the anode (sense) wires. The x and y views of each of the 4 chambers consisted

of parallel sense wires with a 12.7 mm wire separation. The first plane of sense

wires in a given view was followed by a second plane with a wire spacing offset by

half a wire-separation distance in order to resolve left-right ambiguity. This ”plane

pair” arrangement produced hexagonal cells 12.7 mm in diameter (see figures 2.5

and 2.6). Each chamber contains two plane-pairs parallel to x (the ”x-view”) and

two plane-pairs parallel to y (the ”y-view”).

The chambers were filled with 50/50 Argon/Ethane gas, with a small amount

(∼1 %) of isopropyl alcohol added to absorb the UV light that caused deposition
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on the wires. Incoming charged particles ionized the gas, releasing electrons and

producing a current in the sense wire. The signals from the chambers were then

recorded by time-to-digital converters (TDCs), and the drift time information was

used to calculate the position of the original ionizing particle. The field wires were

kept at a potential difference of 2450-2600 V relative to the sense wires, which

corresponded to an electron drift speed of 50 µm/ns and a drift time less than 200

ns.

Drift Chamber Calibration

In order to produce precise mappings from TDC time information to track position

(XT maps), special ”muon runs” were performed every couple of days. During

these runs, the beam stop was inserted into the beam line, the analysis magnet

was turned off, and the sweeper magnet settings in NM2 were adjusted to allow

charged particles. Since muons were essentially the only charged particles that

penetrated the beam stop, this configuration produced a relatively clean beam of

straight-trajectory muons. Chamber alignment was then achieved by comparing the

track-hits in each chamber. In addition, an offline calibration using Ke3 vertexing

information was done to measure rotational variations of DC 2, 3, and 4 relative to

DC 1.

2.2.3 The Trigger Hodoscopes

The trigger hodoscopes were two back-to-back 1.9 m square scintillator arrays

placed at z = 184 m that provided the Level 1 trigger with charged particle tracking

information on timescales much faster than the 200 ns drift times needed for the
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Figure 2.5: Top (y) view schematic of the field and sense wire arrangement within
a drift chamber.
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Figure 2.6: Close-up view of a charged particle passing through a pair of hexagonal
drift chamber cells. The thin lines represent the drift paths of ionization electrons
toward the sense wires.

drift chambers. The upstream (V) counter consisted of sixteen 88 cm scintillator

paddles above the beam and sixteen 110 cm paddles below the beam. The down-

stream (V’) counter had fifteen 110 cm paddles above the beam and fifteen 88 cm

long paddles below the beam. Each scintillator was connected to a photo-multiplier

tube that sent a signal to the L1 trigger.

In order to reduce the effects of the cracks between scintillators, the V and V’

counters were offset from one another through the use of 5 different widths ( 9.92,

11.82, 13.74, 15.63, and 17.76 cm) of paddles. In addition, 14 cm square beam holes

were cut into each plane to reduce trigger rates and minimize shower material in

the beamline.



29

Figure 2.7: Schematic of the V and V’ Trigger Hodoscope Plane Configurations
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2.2.4 The Hadron Anti

A 15 cm (0.9 nuclear interaction length) lead brick wall was constructed just down-

stream of the calorimeter. It served a dual purpose: it absorbed EM shower leakage

from the back of the calorimeter, and it induced hadronic showers that could be

measured by the Hadron Anti (HA).

The HA was a 2.24 m x 2.24m array of scintillator counters. It consisted of 28

scintillator paddles, 14 above the beamline and 14 below, with a 64 cm x 34 cm

beamhole. The HA counter readout was used in the triggers.

2.2.5 The Muon Vetoes

The muon vetoes [19] consisted of a 1m thick steel muon filter (MF1), and two muon

filter-counter arrays. MF1 was placed directly behind the Hadron Anti, and Muon

Filter 2 (MF2) was about two meters farther downstream. MF2, which doubled as

the neutral beam stop was the largest of the three muon filters, measuring 4.3m

across, 3.4 m high, and a full 3 m thick- 44 cubic meters of solid steel in all. Directly

downstream of MF2 was the 3m x 4m MU2 scintillator array.

Less than half a meter behind MU2 was the second filter-counter array, consist-

ing of another 1m thick steel wall (Muon Filter 3– MF3) and another muon counter

array (Muon Counter 3– MU3). MU3 consisted of two 3m x 3m scintillator planes,

MU3X and MU3Y. MU3X had 40 scintillator paddles oriented vertically, while

MU3Y had 40 paddles oriented horizontally. Together the two planes produced a

muon hit resolution of less than 15 cm. MU3 was not used in this analysis.

2.2.6 The Photon Vetoes

A number of detectors were used to veto on high-angle photons that exited the

fiducial volume of the experiment before reaching the spectrometer or calorimeter.
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Figure 2.8: Schematic of Muon Trigger Planes. Dashed lines indicate the 1 cm
counter overlaps in MU2
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Figure 2.9: y view of the KTeV detector downstream of the CsI calorimeter

The first of these were the five ring counters (RC6-10), which were each composed of

16 overlapping scintillator paddles arranged in an azimuthal ring around the inner

edge of the vacuum decay region at different z positions. Although the outer edge

of each RC was circular, the paddles were cut so that the inner edge was square,

defining the fiducial region of the experiment. Each individual paddle had 24 lead-

scintillator layers (corresponding to 16 radiation lengths) and was connected to a

PMT whose pulse height was digitized by a LeCroy 4300 ADC.

Farther downstream were the spectrometer anti counters (SA2-4) and the CsI

Anti (CIA). SA2-4 framed the outer edges of drift chambers 2-4, while the CIA

framed the outer edge of the calorimeter. These rectangular scintillator arrays were

16 radiation lengths thick and were useful for detecting photons as well as charged

particles that were ”kicked” out of the detector region by the analysis magnet. If

at least 0.5 GeV of in-time energy was deposited into any RC, SA, or CIA paddle,

a signal was sent to the L1 trigger to veto the event.

The calorimeter also had a second type of veto, the Collar Anti (CA), that was
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Figure 2.10: Schematics of typical photon veto detectors. RC10 is shown on the
left, SA4 on the right

used to veto particles that struck the calorimeter too close to the beam hole and

would thus only have a fraction of their energy recorded by the CsI crystals. Each

beam hole was overlapped by a square CA ring that consisted of 4 scintillators. Each

counter was 1.5 cm wide and was constructed from tungsten-scintillator layers 9.7

radiation lengths in depth. If at least 14 GeV of in-time energy was deposited in

any segment, a veto signal was sent to the L1 trigger.

The final veto was the Back Anti (BA), a 30 cm x 60 cm counter designed to

veto particles travelling into either of the two beam holes in the CsI detector. The

BA consisted of 30 layers of lead-scintillator sandwich ( 30 radiation lengths or 1

nuclear interaction length) that were placed directly in the beamline, just in front

of MUF2. It was divided into three longitudinal modules to distinguish between

electromagnetic and hadronic particles, based on shower shape. The BA was not

used in this analysis.
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Figure 2.11: Schematic of the CA around the calorimeter beam hole



Chapter 3

The KTeV Trigger System

The Tevatron sent 3000 protons to the KTeV target in a 19 ns bucket, which

translated to roughly 3 x 1012 protons in each 18-20 second spill. Therefore, even

though a proton only had a 1 in 105 chance of producing a kaon, it still meant

that 30 million kaons were produced each spill. Since roughly only 5% of these 30

million kaons would decay within the fiducial volume of the detector [19] and only

a small fraction of those decays were interesting, it became imperative to design an

efficient trigger capable of preferentially selecting specific categories of decays.

The KTeV trigger system [20] had three decision levels, each with different dead-

time limits and correspondingly different selection strategies. The level 1 trigger

was a deadtime-less trigger using commercial electronics, fast signals, and simple

lookup tables. The level 2 trigger was a set of custom processors that evaluate

numbers and patterns of drift wires and CsI channels, and the level 3 trigger used

software running on 24 parallel CPUs that reconstructed events and made loose

kinematic cuts.

In general, the triggers were designed to be as loose as possible, in an attempt

to gain essentially 100% efficiency for the primary ππ signal mode. More details

about specific trigger elements will be discussed in Chapter 4.

35
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3.1 The Level 1 and Level 2 Triggers

The Level 1 and Level 2 triggers [22, 23] used fast Boolean digital signals (”sources”)

to produce trigger decisions. The detector sources (usually from photomultiplier

tubes) were divided into 12 groups of 8 sources each and were timed to the beam.

Each group of sources was fed into a LeCroy 4413 memory lookup unit (MLU),

which, in turn, sent out a 16 bit word to an array of LeCroy 4508 programmable

logic units (PLUs). Cable delays were employed to ensure that the array received

the MLU inputs simultaneously, and the final trigger signal was the AND of all 12

groups. The PLUs, which contained CAMAC-programmed memory lookup tables,

compared the combined trigger signal to the lookup tables to determine whether

the trigger criteria had been satisfied.

3.1.1 The Level 1 Trigger Decision

An ”accept” decision at Level 1 began the digitization of the detector via ADC,

TDC, and latch modules and stored the calorimeter information in FIFO (”first

in-first out”) Buffers.

Trigger stations could be as much as 62 m from the original feed-through, so

”hard-line” RF waveguides were used to reduce trigger processing times. These

hard-lines had a signal propagation speed of 0.88c, which was significantly faster

than the 0.64c propagation rate of standard coaxial cable. To reduce the trigger

rate further, the level 1 process was inhibited by hit signals from the fast photon

vetoes. The downside of the fast vetoing, however, was that accidental activity in

various detectors could cause otherwise good events to fail the triggering criteria.

These innovations, along with the fast signals and relatively simple pattern-

matching logics, allowed the Level 1 trigger to be efficient enough to complete
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processing within the 19 ns bucket window without deadtime1. The raw L1 trigger

rate was about 60 kHz under normal operating conditions.

3.1.2 The Level 2 Trigger Decision

The Level 2 trigger [24] was composed of primarily custom electronics designed

to do pattern matching at a more sophisticated level than the L1 trigger. One of

the primary level 2 elements was the Drift Chamber Hit Counter (DCHC) system,

which was designed to take fast signals from each drift chamber wire and count the

number of hits that occurred on different plane-pairs to determine if they were ”in

time” (i.e. if they came from the same track).

The DCHC system [25] was itself composed of two subsystems: the ”bananas”

(an name derived from the curved plots it produced), which were used for chambers

1 and 2, and (in keeping the fruit theme going) the ”kumquats”, which were used for

chambers 3 and 4. The kumquat boards simply required that latch hits occur within

an 220 ns time interval, while the banana boards technically had more functionality

in that they could correlate time information between hits and essentially cut on the

“sums of distances” (SODs) position measurement. In practice, however, concerns

over possible trigger inefficiencies caused the bananas to be used in ”wide open”

mode for the η± trigger, which made them functionally equivalent to the kumquats.

In this configuration, the DCHC system had a decision time of 800 ns.

Another key Level 2 element was the y track finder (YTF) [26] , a commercial

programmable logic unit that was used to determine whether hits in the drift cham-

ber system were consistent with two straight tracks in the y view. It was optimized

for the KL → π+π− decay, so it searched for one track in the upper region of the

chambers, and one track in the lower region. To increase acceptance, the central

1ignoring detector-level deadtime such as the drift chamber reset time
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part of the chamber was counted as both ”upper” and ”lower”. The inputs to the

YTF were coarse signals from the DCHC system, and its output, which was usually

produced a few hundred nanoseconds before the DCHC decision, was a 4-bit word

containing the number and location of found tracks.

The final Level 2 element of note, although not used in the KL → π+π−γ

trigger decision, was the hardware cluster counter (HCC), which was designed to

count calorimeter ”clusters” (i.e. sets of contiguous channels that all had energy

deposited above some common threshold, nominally 1 GeV). The HCC [27, 28]

counted the clusters based on the patterns of energy deposited in 2x2 groups of

crystals.

The HCC proved extremely useful at reducing the rate of the neutral mode

trigger, which, at Level 1, only required a certain amount of total energy in the

calorimeter, and therefore accepted copious numbers of Ke3 and 3π0 decays. It also

had the longest decision time of any L2 element (1.5 µs).

If an event passed the Level 2 decision, digitization of the calorimeter continued

to completion, and the front-end detector modules were read out. If the event failed

the Level 2 criteria, the front-end modules were cleared and the trigger system was

re-enabled within a few microseconds. The combination of the front-end readout

and the module clearing together produce a deadtime of roughly 35% under normal

running conditions. The standard Level 2 trigger rate was 10 kHz [29].

3.2 The Level 3 Trigger

If the Level 2 trigger was satisfied, the entire detector was read into computer

memory. The level 1 and level 2 selection criteria reduced the event rate enough

that there was sufficient memory to store data from the entire 20 second spill.
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This meant that the 24 Level 3 CPUs had the entire minute (20 seconds ”on spill”

and an additional 40 seconds ”off spill) to process the spill data without incurring

deadtime. The Level 3 software [30, 31] applied a minimal set of kinematic and

particle identification cuts to categorize events by their final decay products. The

software began by reconstructing track and vertex candidates. The calorimeter

information, which was much more CPU intensive than the tracking and vertexing,

would then only be unpacked if one or more suitable vertex candidates were found.

This was important aspect of the trigger, since there was not enough time within

the one minute window to automatically run clustering on all events.

Because the Level 3 cuts depended on the preliminary ”on-line” detector cali-

brations, they were designed to be extremely lenient, and particles were allowed to

receive multiple Level 3 tags. This way, all potential vertex candidates were saved

and could later be analyzed more carefully off-line. For many high-rate decay types

(such as KL → π+π−π0 and Ke3) only a fraction of events were desired and the

Level 3 trigger only tagged a prescaled subset of them. In addition, a fraction of

all input events were tagged to be saved as ”random accept”, regardless of Level 3

processes, so that possible Level 3 software biases could later be studied.

Any event tagged as part of one or more decay types was written to digital

linear tape (DLT). At nominal beam intensity, the level 3 trigger had a processing

rate of roughly 0.7 kHz.



Chapter 4

Event Reconstruction

4.1 Track Reconstruction

The track reconstruction process began with the unpacking of the time-to-digital

converter (TDC) information from the drift chambers. The tracking algorithm

then used the XT maps (described in section 2.2.2 ) to convert the drift times into

distances. Drift chamber ”hits” were classified as ”in-time” if they fell within a

window of 235 ns in width.

4.1.1 hit pairing

If a charged particle that struck a given drift chamber plane also left a hit in the

complementary plane (i.e. the parallel plane offset by half the sense wire spacing)

in the same chamber, the 2 hits were grouped together as a ”hit pair” for that

chamber. The drift distances for the 2 individual hits of a hit pair were combined

to form ”sums of distances” (SODs) for each track. In theory, the SOD value should

correspond to the spacing of the sense wires (6.35 mm). A SOD that was within

± 1mm of this value (± 1.5 mm for the X-views of DC 3 and 4) was considered a

”good” SOD. The position resolution was typically 100 µm , so the combined SOD

resolution was
√

2 times this, or 140 µm. The track position was computed as the

40
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average of the two position measurements.

SOD values that deviated from the sense wire width by more than 1mm were

known as ”high” and ”low” SODs. High SODs generally occurred when a charged

track passed too close to a particular sense wire. When this occurred, the electrons

did not have enough time to avalanche before striking the wire and therefore did

not rise above the threshold immediately, resulting in a delayed time measurement.

Because of this, the other position measurement of such a hit pair was usually more

accurate.

Low SODs were generally the result of two tracks hitting the same drift chamber

cell. Therefore, each cell would register 2 in-time hits.

It was also possible to have ”isolated hits”– i.e. a hit that registered in only

one of the two planes of a drift chamber. In such a case, it is not possible to

determine which side of the wire the track was on, and hence both permutations

were considered.

To aid in the track selection, a ”track quality” value was assigned to each hit

pair. Single hits were given a quality value of 1, low and high SODs were given a

value of 2, and good SODs were assigned a quality value of 4.

4.1.2 Y Track Finding

The tracking algorithm began by looking for y-view track candidates. This was

because the tracks were not bent by the magnet in the y direction, and hence

the track identification in the y-view was simpler than in the x-view. Hit pairs

in chamber 1 were matched with hit pairs in chamber 4 and a straight line was

drawn between them. The tracking program then searched for hit pairs in the two

intervening chambers (DC2 and DC3) that were within 5mm of the line.

If matching hits were found in all four chambers, the quality values for all candi-
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date hit pairs (and/or isolated singles) were summed. A ”perfect” track candidate

would have a quality rating of 16 ( 4 quality points × 4 chambers), a candidate

with 3 good SODs and one isolated hit would be rated at 13, and so on. The track-

ing criteria required a minimum quality rating of 12, which meant that no track

candidate with more than one isolated hit would be accepted.

A track χ2 was then calculated for all candidates that survived the quality cut,

and only candidates with a track χ2 < 4 were accepted.

4.1.3 X Track Finding

Once the y tracks were calculated, the algorithm performed a similar search for

x-view track candidates, with the added complication that the analysis magnet

bent the x-view tracks between drift chambers 2 and 3. Hit pairs were produced

in a manner analogous to the y tracks, but instead of producing a track trajec-

tory between drift chambers 1 and 4, the x-view tracking algorithm produced two

”track segments”, with one segment connecting DC1 and DC2 and the other seg-

ment connecting DC3 and DC4. All possible candidates for track segments were

looped over, and then the complete-track candidates were produced by connecting

candidate track segments at the mid-plane of the magnet.

Upstream segments (from DC1 and DC2) were allowed 2 bad SOD hit pairs

(quality value > 3), while the downstream segments (from DC3 and DC4) were

only allowed one bad SOD (quality value > 4).

4.1.4 Vertex Determination

Once the best track candidates were determined, their trajectories were extrap-

olated upstream to find the z positions of track pair intersections. All possible

combinations of y-view track pairs were calculated first, followed by all combina-
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tions of x-view pairs. A vertex candidate was then defined as a matched set of an

x-track intersection and a y-track intersection that was consistent with the tracks

originating from the same z position (i.e. consistent with being the decay products

of the same parent kaon). Not surprisingly, this often produced a relatively large

number of vertex candidates.

The first method of reducing this number was to require that the individual x-

view tracks of a given vertex candidate bend in opposite directions, hence requiring

that the vertex be produced by a pair of oppositely charged particles. Any x-y

track combinations that remain are then extrapolated downstream to the face of

the calorimeter.

This so-called ”track-cluster matching” required that a vertex candidate must

have a calorimeter cluster within 7 cm of the extrapolated track position in order

to be accepted. Note that this matching was critical to the tracking regime, since

the orthogonal nature of the x and y views make it impossible to match x and y

tracks using the drift chambers alone.

Finally, after some fine-tuning corrections [18] to the track positions, χ2 fits

were applied to the surviving vertex candidates. The best vertex was then selected

from this Vertex χ2 calculation, the segment-matching χ2 at the magnet, and the

number of good SOD pairs (i.e. the track ”quality value”) in the candidate tracks.

4.1.5 Track Momentum Determination

Once a vertex had been calculated for a given event, the momentum of the con-

stituent tracks was determined by the bending of their trajectories in the analysis

magnet between drift chambers 2 and 3.

The momentum (p) of a given charged particle of charge q is related to its

bending angle ∆θ by
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p =
pkick

∆θ
(4.1)

where the momentum kick (pkick) is given by

pkick =

∫
~B · d~l (4.2)

where ~l is the particle trajectory vector and ~B is the magnetic field at each point.

4.1.6 Neutral Particle Reconstruction

Neutral particles like the photon or π0 were not detected by the drift chambers

and therefore needed to be reconstructed from the calorimeter ”clustering” routines

alone. Figure 4.1 shows the calorimeter display of clusters for typical KL → π+π−γ

event.

Hardware and Software Clusters

The clustering algorithm [17, 36] began by using the hardware cluster counter

(HCC) bit information from the ETOT trigger to find local maximum in the amount

of energy deposited in the crystal array. A local maxima with greater than 0.1 GeV

was designated the center, or ”seed”, of a hardware cluster. The complete cluster

was defined as a square block of crystals centered on this seed-either 7x7 small

crystals or 3x3 large crystals. The ”raw’ energy of the cluster was defined as the

sum of all the energies in the grid of crystals.

However, since low-energy photons and minimum-ionizing particles (MIPs) such

as pions or muons left too little energy in the calorimeter to trigger HCC bits, there

was a second class of clusters, known as ”software clusters”, that were determined

without the HCC information. The software cluster algorithm defined any non-

hardware-cluster crystal that had an energy above a certain threshold, nominally
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50 MeV, as a software cluster seed. The raw energy of each cluster was then

computed in a manner similar to the hardware clusters. Software clusters with net

raw energies of less than 100 MeV were dropped.

Cluster Position

The x position of a cluster was determined by summing the crystal energy in the

central column (i.e. the one containing the seed block) and comparing to the

energy sums of the adjacent columns. The ratios of the column energies were then

compared to pre-determined lookup tables (produced from studies of KL → π0π0

and Ke3) that outputted the cluster x position. The y position was produced in

a totally analogous way, except using the cluster rows instead of columns. This

method resulted in a position resolution of ∼ 1 mm for clusters in small blocks and

∼ 1.8 mm for clusters in large blocks [16].
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KTEV Event Display

/beauty1b/ronquest/pmgdata/k
tev99raw1/tapes1and2vac.dat

Run Number: 13602
Spill Number: 279
Event Number: 21584707
Trigger Mask: 3
All Slices

 -  10.00 GeV

 -   1.00 GeV

 -   0.10 GeV

 -   0.01 GeV

 -  Cluster

 -  Track

Track and Cluster Info
HCC cluster count: 2
 ID    Xcsi    Ycsi   P or E
T 1: -0.5194 -0.8033  -10.38
C 4: -0.5278 -0.8082    1.57
T 2:  0.5018  0.4753  +20.02
C 1:  0.5226  0.4737    9.53
C 3:  0.1966 -0.1837    5.08

C 2:  0.4508  0.4725    0.88

Vertex: 2 tracks, 1 clusters
   X        Y       Z
 0.1120  -0.0009  132.469
Mass=0.4923 (assuming pions)
Chisq=1.05  Pt2v=0.000006
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Figure 4.1: Calorimeter track and photon clusters for a typical KL → π+π−γ event



Chapter 5

Data Reduction and Signal
Extraction

5.1 The Level 1 and 2 Trigger Requirements

There were sixteen beam triggers defined for E832: the two primary π+π− triggers

plus 14 others. Most of the 14 remaining triggers were looser, pre-scaled versions of

the signal triggers designed to collect data for trigger inefficiency studies, but others

were used to select rare kaon and hyperon decay events. Trigger 16, the accidental

trigger, was especially important, since it recorded data on the underlying detector

activity for use in the Monte Carlo simulation. The KL → π+π−γ data sample

was collected using the η+− trigger (trigger 1), the same trigger used to select the

KL → π+π− data for the ε’/ ε analysis. The η+− trigger was unprescaled and had

a trigger definition abbreviated as:

Level 1: SPILL * 2V * VEWUD * DC12 * VETO CHRG

Level 2: 2HCY LOOSE * YTF UDO M

Where

• SPILL = beam delivered from Tevatron.

• 2V = VV’ hit counting: 2 hits in V, 1 hit in V’ (or vice versa).

47
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• VEWUD = VV’ East-West-Up-Down: 1 track in the East side of the ho-

doscope, and 1 in the West. Plus, 1 track must be in the upper portion and

the other in the lower portion.

• DC12 = 3 ”DC-OR” hits in the 4 possible views.

• VETO CHRG = No appreciable energy in regenerator, SA, CIA, or MU2

veto counters.

• 2HCY LOOSE = Drift Chamber hit counting: Require 2 in-time DC hits in

at least 3 of the 4 y views.

• YTF UDO M = YTF records 1 upward-going and 1 downward-going y track,

with overlap in the center region of the chamber. Marginal quality of 1 track

was accepted.

A few of these trigger requirements will be described in more detail in the up-

coming sections. Note, however, that none of the trigger requirements listed above

required calorimetry information. This will become significant in the upcoming

discussion of the level 3 trigger definitions.

5.1.1 The Trigger Hodoscope Requirement

The trigger hodoscope banks (VV’) were the primary Level 1 element. An event

must be recorded with 2 tracks in one bank and at least one in the other. This

definition was chosen over the more restrictive 2-tracks-in-each-bank requirement

in order to accept events that might have passed through a crack between paddles

in one of the two banks.

The East-West-Up-Down requirement was designed to cut π+π− tracks that

had scattered somewhere between the target and the decay vertex (i.e. events with
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non-zero transverse momentum).

5.1.2 The DC-OR Requirement

The DC-OR requirement [32] was another critical element of the level 1 trigger.

Since the hodoscope banks were downstream of the drift chambers, it was possible

for a kaon to decay downstream of the drift chamber and still produce charged

decay tracks that satisfied the trigger hodoscope requirements. These events were

exceedingly difficult to reconstruct and it was therefore desirable to remove them

from the fiducial sample at trigger level. The difficulty lay in the fact that the

lengthy 200 ns maximum drift time of the drift chambers made it fairly impractical

to process chamber hits in a fast trigger.

The key to the success of the DC-OR requirement was the recognition that a

particle passing between two adjacent sense wires must leave a hit in one of the two

wires in less than half the maximum drift time (i.e. in under 100 ns)1. Therefore,

by taking the logical OR of the two wires, the hit information could be passed

to the Level 1 trigger decision on a sufficiently rapid timescale. The final trigger

definition required receipt of hit signals from drift chambers 1 and 2 (DC3 and DC4

were not used in Level 1) within 90 ns of a trigger hodoscope hit.

In order to produce the DC-OR signal, the two drift chambers were represented

as a collection of ”paddles” that were eight and a half cells wide and contained 16

sense wires apiece. The logical OR of each paddle was taken and sent to a central

controller that counted the number of hits in each view. Both the x and y views

were instrumented, and the trigger required that there be fired paddles in 3 of the

4 possible views.

The DC-OR logic reduced the Level 1 output rate by greater than a factor of

1In fact, the average particle drift time was only ∼ 60 ns.
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two.

5.1.3 The Veto Requirement

A η+− trigger event was vetoed at Level 1 if at least 0.5 GeV of in-time energy was

deposited into any Ring Counter (RC), Spectrometer Anti (SA), or Cesium Iodide

Anti (CIA) paddle. This requirement was useful in reducing the acceptance rate of

KL → π+π−π0 events into the final KL → π+π−γ sample.

5.2 The Level 3 Trigger

The Level 3 trigger (as previously discussed in section 3.2 ) was a software filter

that reconstructs events from the on-line values and ”tags” events that appear to fit

the description of one or more decay modes of interest. Tagging requirements were

generally fairly loose and events were allowed to be tagged as more than one decay.

The primary requirements for the KL → π+π−γ tag in the η+− trigger (trigger 1)

was that the event should have 2 tracks with an energy/momentum ratio less than

0.9, at least one good vertex candidate, at least one photon cluster candidate with

energy greater than 1.0 GeV, and a combined π+π−γ invariant mass of at least 450

MeV. In addition, since the calorimeter was not automatically unpacked in trigger

1 (in order to speed the trigger rate), any events that otherwise would have been

rejected by the non-calorimeter information alone were given an additional ”on-line

pp0kine” cut that cut against the kinematics of the KL → π+π−π0 decay mode2

in order to avoid throwing away good KL → π+π−γ events unnecessarily.

However, many of the KL → π+π−γ tagged events also satisfied the very

similar, but slightly looser (and 1/7 pre-scaled) trigger 2 in addition to trigger one.

Therefore, since the calorimeter was always unpacked for trigger 2 events, at least

2the pp0kine cut kinematics are discussed in more detail in section 5.4.4
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1/7 of the KL → π+π−γ events passed the level 3 trigger during the data run

without ever having the special ”on-line pp0kine” cut applied.

To deal with this, an off-line level 3 job was (much) later run on the KL →

π+π−γ tag events a second time to ensure that the pp0kine cut was applied to all

events. This meant that, in order to correctly reproduce this, all Monte Carlo also

needed to be run through the Level 3 filter code two separate times, slowing the

event processing considerably.

5.3 Data Reduction

By the end of the 1997 run, 4.9 billion events had been written to 2645 separate

15 GB magnetic tapes. However, since the events were written in the order that

they were processed, that meant that all decay modes were spread out over all

2645 tapes. Therefore, it was necessary to reprocess the tapes before analysis could

begin.

5.3.1 The Split

The first step in the data reduction process was to sort the events by their level

3 tag and rewrite them to separate tapes. This data ”split” took 5 months to

complete and required an additional 2897 tapes. The ∼ 430 million events that

were tagged as KL → π+π−γ during the 1997 run were written to 293 separate

tapes (labeled KZG097-KZG389).

5.3.2 The Crunch

Even 293 tapes was far too many to make analysis practical, so a second level

of data reduction, called the “crunch”, was done. The crunch code made loose,

preliminary cuts on a number of the analysis cuts and can be summarized [33] as
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follows:

• The Z component of the vertex was between 100 and 160 m.

• The track energy/momentum ratio was less than 0.9

• Pp0kine was less than -0.002

• Calorimeter cluster energy was at least 0.9GeV

• The separation between the track and photon clusters in the calorimeter was

at least 18 cm

• The combined π+π−γ momentum was at least 10 GeV

• The combined π+π−γ invariant mass was between 0.460 and 0.540 GeV

• The transverse momentum squared of the combined π+π−γ particle was less

than 0.005

The exact definition and usefulness of each of these cut variables will be dis-

cussed at greater length in section 5.4. Roughly 2% of events with level 3 KL →

π+π−γ tags were written to 4 crunch tapes (KQH460-KQH463).

5.4 Signal Extraction

Extracting the desired signal events from all the other events that received the

same tag required a very specialized set of requirements that were each tailored to

a specific purpose. These requirements can be grouped into four general categories:

reconstruction quality, fiducial and resolution constraints, particle identification

and rejection, and signal mode kinematics. Each requirement will be discussed in

detail, and plots of the agreement between the data and Monte Carlo in some these

variables are shown in figures 7.6 through 7.5.
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5.4.1 Reconstruction Quality Cuts

The analysis routine begins by checking the database to remove all ”bad spill”

events-i.e. events during runs or spills in which beam quality or detector perfor-

mance were known to be poor. The tracking and calorimeter clustering information

was then reconstructed and all signals from the veto detectors were checked with

final calibrations to determine if any event in the sample should have triggered the

veto counters even if they obviously had not during the original data-taking.

After reconstruction, exactly two tracks were required for acceptance, and, as

mentioned in section 4.1.4, they needed to have x trajectories in opposing directions.

In addition, the χ2 agreements for both the vertex position and the x-trajectory

offset at the magnet needed to be less than 50.

5.4.2 Fiducial and Resolution Cuts

A number of fiducial cuts were made to ensure that events in the final data sam-

ple struck the detector in regions where they could be reconstructed accurately.

Events projected near the apertures of the veto detectors, or near the edges of drift

chambers or trigger counters were all removed. In addition, x tracks were required

to be well-separated (separation > 3 cm) at the calorimeter to avoid the chance of

mis-pairing the x and y components of the tracks.

Strict requirements were also imposed on clusters in the calorimeter. Clusters

with seeds near the outer edge or beam holes of the calorimeter were removed in

order to ensure that all energy was recorded. Track and photon cluster candidate

clusters were required to be separated by a minimum of 30 cm, which minimized

both potential cluster overlaps and the effects of hadronic showering around the

pion track clusters.

Photon clusters were also required to have a minimum energy of 1.5 GeV, well
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above the calorimeter threshold of ∼ 1 GeV. This cut had the added bonus of

further cutting against the (generally low-energy) pion shower photons that might

otherwise have been mistaken for a signal-mode photon. Clusters were additionally

required to have a cluster shape χ2 agreement of 48 or better (i.e. they needed to

be symmetric around the seed crystal, rather than ”blotchy”, etc).

It is important to note that, even with all these restrictions on clustering, it

was very common for events to have more than one photon cluster candidate. In

order to choose the correct cluster, all candidate clusters were considered, and the

one that satisfied all analysis cuts was selected. Moreover, any event that had more

than one cluster that satisfied all cuts was removed from the sample.

5.4.3 Particle Identification and Rejection

Particle identification cuts were made to specifically target and remove events from

background modes. Requiring that the ratio of the energy/momentum for the

charged tracks be less than 0.85 was highly effective at removing events with electron

tracks (such as KL → π±e±ν ), since electrons tend to have E/p values near 1.0.

In a similar vein, modes containing muon tracks (such as KL → π±µ±ν ) were

cut on by requiring that the momentum of each track be at least 8 GeV. This

ensured that the muon tracks had sufficient energy to penetrate all the way to the

muon vetoes and could thus be correctly detected and removed from the final event

sample.

The KL → π+π− decay mode events could also potentially have mimicked

the signal, provided a given event was paired with an accidental photon that just

happened to have the right energy to meet the signal mode kinematic criteria.

Therefore, since the combined invariant mass of the two pions alone should add up

to the kaon mass (∼ 0.498 GeV) for these decays, a cut was added to exclude any
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events with a 2-pion invariant mass greater than 0.492 GeV.

In order to reduce the flux of the early-decaying KS events, the z position of

the vertex was required to be greater than 120.0 meters. There was also a high

cut on the vertex z position, at 158.0 meters, that was actually a fiducial cut that

ensured that the parent kaon decayed before reaching the vacuum decay window.

The requirement that the combined π+π−γ momentum (i.e. the momentum of

the reconstructed kaon) should fall between 25.0 and 160.0 GeV was also useful in

removing unwanted KS events.

Perhaps the most important of the rejection cuts, however, was the so-called

”pp0kine” cut, which was specifically designed to cut against KL → π+π−π0

events, which were the primary background events to this analysis. It is defined

as the square of the longitudinal momentum of the reconstructed π0 in the frame

in which the longitudinal momentum component of the π+π− pair is zero, and is

given by

p2
π0 ≡

(M2
K − M2

π0 − M2
ππ)2 − 4M2

π0M2
ππ − 4M2

K(p2
T )ππ

4 [(p2
T )ππ + M2

ππ]
(5.1)

where M2
K is the invariant mass-squared of the kaon mass, M2

π0 is the invariant

mass-squared of the π0, M2
ππ is the invariant mass-squared of the π+π− pair, and

(p2
T )ππ is the square of the transverse momentum of the π+π− pair (relative to the

kaon line of flight). A diagram illustrating the definition of PP0KINE is shown in

figure 5.1.

Since it is the square of the momentum, this quantity should be greater than

zero for all true KL → π+π−π0 decays. However, since it was generally nega-

tive for KL → π+π−γ events, it proved to be an extremely powerful method of

discriminating against KL → π+π−π0 in the final sample.
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Figure 5.1: Definition of the PP0KINE kinematic variable. It is defined as the
square of the π0 longitudinal momentum in the frame in which the longitudinal
π+π− momentum is zero.

5.4.4 Kinematic Cuts

Kinematic cuts were those cuts made to specifically select on the distinguishing

characteristics of the KL → π+π−γ decay events. Probably the most obvious (and

useful) of these cuts was the kaon mass cut. This cut required that, once the best

photon cluster had been selected, the combined invariant mass of the three daughter

particles in the decay– the π+ , the π− , and the photon - should reproduce the

mass of the original parent kaon. In order to be accepted into the final sample,

this π+π−γ combined mass needed to fall between 0.48967 and 0.50567 GeV (i.e.

MK ± 0.008 GeV).

Another important cut was the requirement that net transverse π+π−γ mo-

mentum be less than 2.5×10−4 (GeV/c)2. This cut took advantage of the fact that

the combined momentum of the daughter particles (in this case, the π+, π−, and γ)

should align with the original kaon trajectory3. Therefore, discriminating against

3which was computed by drawing a line from the vertex back to the center of the production
target
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events with unusually large transverse components, relative to the kaon flight path,

was an excellent way of removing unwanted events.

Finally, the photon energy in the kaon center of mass (i.e. the phase space

variable ”ω”) was required to be greater than 20 MeV, in accordance with the

standard ω cutoff value used in the literature to avoid theoretical uncertainties at

low photon energies.

It is worth noting at this point that the value of ω can be determined solely

from the tracking information alone, according to the relation4

ω =
M2

K − M2
ππ

2MK

(5.2)

In other words, the measurement of this critical phase space variable was ob-

tained entirely independently of the calorimeter information! This was extremely

advantageous, due to the fact that the pion tracking information was calibrated

very accurately using data from the KL → π+π− decay sample.

4see Appendix B for a derivation



Chapter 6

The KTEV Monte Carlo

The Monte Carlo simulation of the KTeV experiment was performed by a detailed

custom generation program called KTEVMC. To make this work, models were

created for each aspect of the detector and then calibrated using actual data events.

As a result, a high level of agreement between real and simulated KL → π+π−γ

events was achieved (see figures 7.6 through 7.5).

6.1 Kaon Production

The kaon spectrum simulation was generated based on an extrapolation of the

Malensek [34] parameterization of K+ and K− production by 450 GeV protons on

a BeO target to higher energies. In this parameterization, the number of kaons (N)

with lab momentum P into a solid angle Ω is given by

d2N

dPdΩ
=

B

400

[
x(1 − x)A(1 + 5e−Dx)

(1 + P 2
t /M2)4

]
(6.1)

where x is the ratio of P to the momentum of the incoming proton beam, Pt is the

kaon transverse momentum relative to the incident beam direction, and parameters

A, B, D, and M were all fit using the the experimental data.

Using the valence quarks in the incoming protons as a guide, the distribution

58
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probabilities for K0 and K̄0 were extrapolated as

K0 ∼ 1

2
(K+ + K−) (6.2)

K̄0 ∼ K− (6.3)

This model predicted the observed kaon energy spectrum to within ∼ 8 %. It

was then refined with a polynomial correction obtained using KL → π+π− data.

6.2 Kaon Transport

The initial transverse position of the kaon in the production BeO target was based

on measurements of the finite size of the incoming proton beam. The longitudinal

production position was determined from an exponential profile of the interaction

probability of protons on beryllium. Once the initial K0 and K̄0 particles were

produced, they were expressed as vectors in the KL, KS eigenstate basis. In vacuum,

the transformation matrix was diagonal, with terms that simply represent the decay

probabilities of the KL and KS states. In matter, the transformation matrices

contained both off-diagonal and diagonal elements in order to correctly account for

the differing K0 and K̄0 material interaction properties.

As a practical matter, however, the KS particles decayed extremely rapidly in

the vacuum beam. Therefore, the vacuum kaon beam that reached the detector was

almost entirely composed of pure KL particles, except at very high neutral kaon

energy (> 200 GeV).

After leaving the target, the kaons were propagated down the beamline. As they

passed through the absorbers, there was a finite probability that the kaons would

scatter. To simulate this, an exponential distribution based on lead or beryllium

scattering probabilities was used to assign the appropriate transverse momentum
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to the scattered kaons. Once through the absorbers, the generated kaons would

pass through the neutral collimators.

6.3 Kaon Decay Tracing

The z position of the kaon decay was determined from decay probability distribu-

tions inputted into KTeVMC. Once the kaon decayed, all daughter particles except

neutrinos were traced through the detector to the back-anti (BA). Muons were

traced past the BA, through the filter steel, and all the way through the muon

counters. Particles with trajectories that exited the fiducial region of the detector

were no longer traced. In addition, the simulation program included an option

to cease tracing an event when a daughter photon hit a photon veto counter and

deposited enough energy to trigger the veto.

Secondary decays (such as π → µν) and multiple scattering of daughter charged

particles were accounted for. Electromagnetic interactions such as bremsstrahlung

photon emission from electrons, and photon to e+e− pair conversion were also

simulated.

6.4 Drift Chamber Simulation

Drift chamber hits were simulated by calculating the distance from the generated

particle to the closest sense wire plane and then smearing it with a Gaussian distri-

bution in order to simulate the position resolution of the chamber (∼100 µm). The

resulting distance was then converted into a time using the known time vs. distance

relationships measured from the data. However, this model was not sufficient to

precisely simulate the observed data.

The two effects that required the most corrections were ”high SODs” and ”hit



61

inefficiencies”. High SODs (sums of distances)1 occurred when the recorded SOD

distance exceeded the size of drift cell. Hit inefficiencies occurred when particles

passing through a drift cell failed to register as hits. Both of these effects turned

out to be localized to specific regions in each chamber and to vary over the course

of the run. Therefore ”DC maps” that accounted for these effects were saved into

the database for each chamber and run.

Accidental events also required additional corrections. Accidentals that trig-

gered a drift chamber cell prior to the ”in-time” window could obscure a hit from

the simulated event particle. The drift chamber discriminator cards were designed

to function with a 50 ns deadtime, but it turned out that these accidental events

could occasionally produce very broad analog pulses that remained above the dis-

criminator threshold for longer than 50 ns.

“Delta rays” (scattered electrons) could also produce spurious hits in the drift

chamber. A study of the data showed that this effect was only relevant above a

certain cutoff in secondary electron energy, and a model of this was added to the

simulation.

6.5 Calorimeter Simulation

Since electromagnetic showers involve thousands of particles, the simulation of even

a single shower was time-consuming. Therefore, running through the full simulation

of each shower for many millions of kaon decays was impractical. Instead the

GEANT particle simulation software package [37] was used to generate a library of

several thousand simulated showers that was saved to the KTEVMC database [35,

36]. This library simulated a 13x13 array of small (2.5 cm x 2.5 cm) CsI crystals.

This corresponded to a total transverse area of 32.5 cm x 32.5 cm that was divided

1i.e. poor drift chamber tracking. See section 4.1.1 for more details on SOD calculations.
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into 500 µm x 500 µm bins. The larger (outer region) crystals were treated as

conglomerates of 4 small crystals. The showers libraries included six generated

energies ( 2, 4, 8, 16, 32, and 64 GeV) and 25 values of the mean longitudinal

shower position, z .

During generation, the Monte Carlo selected a shower based on the incident

particle’s initial energy (which was Gaussian smeared to simulate calorimeter reso-

lution) and position in the 3×3 array. The generated z was treated slightly different

for photons and electrons and was produced according to

ze = 0.11 + 0.18lnEe (6.4)

zγ = 0.12 + 0.18lnEγ (6.5)

In order to produce a roughly continuous distribution, KTEVMC ”interpolated”

between the discrete shower energies in the library by randomly selecting a shower

with either higher or lower energy than the generated particle and then reweighting

between the two levels.

A separate library was used to simulate the approximately 30% of pions that

showered in the calorimeter. The non-interacting pions were treated as minimally

ionizing particles (MIPs) and were assumed to uniformly leave 320 MeV in the CsI.

The pion showers were generated using GEANT (augmented by the FLUKA pack-

age for hadronic interactions) [37] to model a 41 x 41 array of small crystals. This

array, with a transverse size of 102.5 cm x 102.5 cm, was considerably larger than

the one used for photons and electrons, since pions generate much larger showers.

Aside from the larger array size, and the correspondingly coarser transverse binning,

hadronic showers were generated in manner very similarly to the electromagnetic

ones.



63

The pion shower library contained approximately 900,000 shower events, sepa-

rated into records of 3200 events apiece. Each shower record included the amount

of energy deposited into each of the 1681 crystals as well as the type of primary

interaction and whether hadronic secondaries were produced.

6.6 Accidental Activity

The high flux of the KTeV neutral beam made it natural to expect some level of

underlying (”accidental”) activity. Stray particles from upstream kaon or hyperon

decays, cosmic rays, and beam interactions with detector or target material were

all likely sources of accidental events. Although most of these interactions simply

caused the triggering systems to veto the events, there were some that arrived at

the detector a few buckets later than the vetoed event. These could then have been

reconstructed as early or in-time contributors to a later real event. They could

manifest themselves in the data as drift chamber inefficiencies (ie early triggering,

resulting in DC deadtime), spurious drift chamber hits, or additional particle energy

in the calorimeter.

This effect was accounted for in the Monte Carlo by overlaying events from

the “accidental trigger” on top of good generated events. The accidental trigger

consisted of a counter telescope that was in close proximity to the neutral kaon

production target, but oriented at a 90 degree angle. This configuration of the

accident trigger provided a record of accidental activity directly from the data.

The resulting distribution of accidental events was thus expected to closely resemble

that found in the final real-event samples, since the flux in the accidental trigger

was directly correlated to beam activity (which would not have been the case if a

random trigger been used).
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Since accidentals in the data could lead to spurious or inefficient triggering, it

was important to accurately model the effect in the Monte Carlo when an accidental

was superimposed upon a generated event. Therefore, the drift chamber TDC hits,

veto and hodoscope counts, and CsI crystal energies from the accidental activity

were all directly added to the generated event information prior to the evaluation

of any trigger sources.

6.7 Trigger Simulation

The KTeV Monte Carlo simulated all elements of the trigger– including the hit-

counting system (bananas and kumquats), the Hardware Cluster Counter (HCC),

and the y-track finder (YTF)– and used the same binary trigger-definition maps

that were used on-line during data taking. The only difference was that the memory-

lookup algorithms that were originally done on hardware were now performed by

software.

The output of the Monte Carlo triggers had a format identical to the real data;

drift chamber TDC information, Level 1 source bits, and trigger bits were all in-

cluded. This meant that the reconstruction code (i.e. the Level 3 trigger code)

could be run on both data and Monte Carlo without changes and ensured that

Monte Carlo events that passed Level 3 would be written to disk in the exact same

format as the data.

Inputs to the DC-OR, banana, and kumquat logics used sources simulated from

recorded digitial drift chamber hits, with the hit counters assumed to be perfectly

efficient. The Etotal and HCC simulations were slightly more complicated, since

data-obtained threshold curves and high-energy inefficiencies for each individual

calorimeter channel were used as inputs to the Monte Carlo model.
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To save time, the trigger sources for photon vetoes were evaluated during particle

tracing, and the generation would stop as soon as a particle failed a veto or a trigger

decision.



Chapter 7

Likelihood Extraction of Matrix
Element Parameters

7.1 A Brief Overview of Likelihood Analysis

The likelihood function is an extremely powerful tool for particle physics analysis.

In fact, it is perhaps the single most accurate way to extract the best fit values of

a given parameter set ~α; yet it is a surprisingly simple concept.

The likelihood function L(~α ) is defined as a product of individual probability

functions Pi(~α), specifically

L(~α) =
N∏

i=1

Pi(~α) (7.1)

where N is the number of events.

This implies that the likelihood is the net probability over all individual prob-

ability functions. To extract the best fit values of ~α , one then simply maximizes

L(~α ) with respect to ~α . In other words, one finds the value of ~α that corresponds

to the highest net probability.

66
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7.2 The Likelihood Function for a Generalized

Decay

We begin by defining a function f(~x, ~α) that decribes the final decay probability

density for any given set1 of phase space variables ~x and any set of fit parameters

~α . The function f(~x, ~α) can then, in turn, be described by

f(~x, ~α) = µ(~x, ~α)a(~x) (7.2)

where µ(~x, ~α) is the decay probability distribution and a(~x) is the function that

describes the final detector acceptance (including detector constraints, triggering,

and analysis cuts).

However, since f(~x, ~α) is not normalized, we introduce a new function

P (~x, ~α) ≡ f(~x, ~α)∫
V (~x)

f(~x, ~α)d~x
(7.3)

that is intrinsically normalized by construction according to

∫

V (~x)

P (~x, ~α) = 1 (7.4)

Therefore, the corresponding likelihood function for Nd events in a given data

set is

L(~α) =

Nd∏

i=1

P (~xi, ~α) =

Nd∏

i=1

f(~xi, ~α)∫
V (~x)

f(~x, ~α)d~x
(7.5)

Taking the natural log of both sides, this becomes

log L(~α) =

Nd∑

i=1

log

[
f(~xi, ~α)∫

V (~x)
f(~x, ~α)d~x

]
(7.6)

Using equation 7.2, this becomes

1in this particular analysis ~x = {ω, cos θ} and ~α = {g̃M1, a1/a2, Ge1}
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log L(~α) =

{
Nd∑

i=1

log [µ(~xi, ~α)] +

Nd∑

i=1

log [a(~xi)]

}
− Nd log

[∫

V (~x)

f(~x, ~α)d~x

]
(7.7)

Monte Carlo techniques of numerical integration are then used to re-express the

integral in the third term in a more useful form, specifically2:

∫

V (~x)

f(~x, ~α)d~x = V < f > (7.8)

where

< f >≡ 1

Nuni

Nuni∑

j=1

f(~xj, ~α) (7.9)

and Nuni is the number of events uniformly distributed over the phase space V, and

f(~xj, ~α) is the weight of the jth event.

Now consider the specific case when the fit parameters are chosen at a given

“baseline” value of ~α = ~α0 and, after reweighting by the probability distribution

function f(~xi, ~α0) , there are NMC(~α0) ≡ N0 Monte Carlo events. The original

number of uniformly distributed events (Nuni ) that was used to produce this sample

can then be inferred as

Nuni =

N0∑

i=1

1

f(~xi, ~α0)
(7.10)

Inserting 7.9 and 7.10 back into 7.8 gives

∫

V (~x)

f(~x, ~α)d~x =

(
V∑N0

i=1
1

f(~xi,~α0)

)
Nuni∑

j=1

f(~xj, ~α) (7.11)

In addition, from equation 7.10 it can be seen that the sum over j = 1,2,3,...,Nuni

events in 7.11 can be replaced by a sum over i = 1,2,3,...,N0 events if each event is

given a reweighting factor of 1
f(~xi,~α0)

such that

Nuni∑

j=1

f(~xj, ~α) =

N0∑

i=1

[
1

f(~xi, ~α0)

]
f(~xi, ~α) (7.12)

2Note that this is essentially just the extension of the familar “Second Fundamental Theorem
of Integral Calculus”, < f >= ( 1

b−a )
∫ b

a
f(x)dx , to multiple dimensions.
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So, by inserting equation 7.12 into equation 7.11, the integral over any arbitrary

~α can be expressed as

∫

V (~x)

f(~x, ~α)d~x =

(
V∑N0

i=1
1

f(~xi,~α0)

)
N0∑

i=1

f(~xi, ~α)

f(~xi, ~α0)
(7.13)

However, from equation 7.2 we know

f(~xi, ~α)

f(~xi, ~α0)
=

µ(~xi, ~α)a(~xi)

µ(~xi, ~α0)a(~xi)
=

µ(~xi, ~α)

µ(~xi, ~α0)
(7.14)

and therefore equation 7.13 reduces to

∫

V (~x)

f(~x, ~α)d~x =

(
V∑N0

i=1
1

f(~xi,~α0)

)
N0∑

i=1

µ(~xi, ~α)

µ(~xi, ~α0)
(7.15)

Inserting 7.15 back into 7.7 produces

log L(~α) =

{
Nd∑

i=1

log [µ(~xi, ~α)] +

Nd∑

i=1

log [a(~xi)]

}
−Nd log

[(
V∑N0

i=1
1

f(~xi,~α0)

)
N0∑

i=1

µ(~xi, ~α)

µ(~xi, ~α0)

]

(7.16)

With a little bit of algebra, we finally arrive at the desired form

log L(~α) =

Nd∑

i=1

log [µ(~xi, ~α)] − Nd log

[
N0∑

i=1

µ(~xi, ~α)

µ(~xi, ~α0)

]
+ Q(~x) (7.17)

where

Q(~x) ≡ Nd log

[
1

V

N0∑

i=1

1

f(~xi, ~α0)

]
+

Nd∑

i=1

log [log a(~xi)] (7.18)

Note, however, that since Q(~x ) has no ~α dependence, it is convienient to define

a new function L such that

L(~α) ≡ log[L(~α)] − Q(~x) =

Nd∑

i=1

log [µ(~xi, ~α)] − Nd log

[
N0∑

i=1

µ(~xi, ~α)

µ(~xi, ~α0)

]
(7.19)

The advantage of maximizing the sub-function L instead of the complete log[L(~α)]

is that we can determine the best-fit values of ~α — with no loss of generality— with-

out the need to undertake the (often very difficult) task of determining an explicit

expression for the detector acceptance function a(~x).
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7.3 Application of the Likelihood Function to KL →
π+π−γ

7.3.1 The KL → π+π−γ Likelihood Maximization Procedure

To do the KL → π+π−γ analysis, equation (7.19) was coded into a Fortran 77

program that used the Powell Method of minimization/maximization given in Nu-

merical Recipes [38] to determine a maximum likelihood values and a corresponding

set of best-fit parameter values for ~α = {g̃M1,
a1

a2
, GE1}. This code included, among

other things, the explicit expression for the KL → π+π−γ differential decay rate

function, given by equation (1.48).

There were only two required inputs to this program: a file containing the final

event-by-event phase space distribution of the data, and a similar file (with all cuts

made identical to the data) for the baseline Monte Carlo file. In order to improve

statistical accuracy, the baseline Monte Carlo was generated to be fifty times as

large as the actual data sample3.

A given likelihood fit using baseline Monte Carlos of this size (∼ 6 million final

events!) usually required 1-2 days of CPU time on a single 2.4 GHz node in the

UVa HEP computer farm.

7.3.2 Determination of the Baseline Monte Carlo Size

Before the fit procedure could be run, the size of the “baseline” Monte Carlo needed

to be ascertained. In principle a very large Monte Carlo sample was desirable, so

that statistical variations between samples that differed only by a random seed

would be very small. However, since the likelihood function (7.19) is a sum over

the events, the computer CPU time is essentially directly proportional to the size

3see section 7.3.2 for further discussion on why this particular size of baseline Monte Carlo
sample was chosen.
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of the event sample. It was therefore important to strike a very careful balance

between reducing the statistical error on the baseline sample (σMC) and keeping

the CPU requirement at a somewhat reasonable level.

In practice, this meant finding a value of Q ≡ NMC/NData that essentially made

σ2
MC/σ2

TOT << 1. Noting that σ2
TOT = σ2

MC +σ2
Data, the ratio of the statistical error

of the baseline Monte Carlo to the total statistical error can be expressed as

σ2
MC

σ2
TOT

=
σ2

MC

σ2
MC + σ2

Data

(7.20)

Note that, in general, the statistical error (assuming a Gaussian distribution)

falls off as 1/
√

N , and therefore

σMC(Q) =
σMC(Q = 1)√

Q
≡ σ0√

Q
(7.21)

where σ0 ≡ σMC(Q = 1).

Finally, since, by definition, NMC = NData when Q = 1, the statistical error on

the data sample should be roughly the same as that for a sample of size NMC(Q =

1). That is

σData ∼ σMC(Q = 1) ≡ σ0 (7.22)

Plugging (7.21) and (7.22) into (7.20), we get

σ2
MC

σ2
TOT

∼
σ2
0

Q

σ2
0

Q
+ σ2

0

(7.23)

which reduces to the very simple final expression of

σ2
MC

σ2
TOT

∼ 1

Q + 1
(7.24)

From figure 7.1 we can see that our model suggested that little improvement of

the final statistical error could be gained by using Q values greater than 40 or 50.
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Figure 7.1:
σ2

MC

σ2
TOT

vs Q
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As a result, we chose to generate a baseline Monte Carlo that was 50 times the size

of the data sample (i.e. Q =50), which meant that the statistical fluctuations in

the baseline were expected to contribute ∼ 1/(50 + 1) · 100% ∼ 2% to the total

statistical error, while the flunctuations associated with the data were expected to

contribute the remaining ∼ 98%.

7.3.3 Extraction Procedure for the g̃M1 and a1

a2
Best Fit

Values

Once the maximum log-likelihood, Lmax(~α), had been determined, a second pro-

gram was run that iterated through a three dimensional grid of parameter values,

centered on the maximum. The 1-sigma deviation from the maximum [39] was

defined as the 3-D “error ellipsoid” that bounded all values of ~α that produced a

log likelihood value that was within 0.5 of the maximum. The 1-sigma statistical

errors– adjusted for errors due to finite grid bin width– for parameters g̃M1 and a1

a2

were determined directly from this procedure.

An approximate best-fit value and upper limit for GE1 was also produced,

though it was later refined using the method of Feldman and Cousins [40]4. The pre-

liminary upper limit for GE1 proved to be useful, however, as an initial benchmark

to determine the importance of systematic errors relative to statistical sensitivity.

Note that running a 3-D grid around the maximum likelihood value was extremely

CPU intensive. It generally required 1-4 weeks of CPU per job, depending on the

coarseness of the binning.

Once the best-fit values of the parameters had been extracted, a new Monte

Carlo was generated at those values and compared to the data. This comparison

demonstrated a high level of agreement in both spectrometer momentum resolution

4see section 8.2 for a full discussion
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(figures 7.2 through 7.4) and track position (figure 7.5). Similar agreement was also

seen in calorimeter cluster energy and position resolution (figures 7.6 through 7.10),

and vertex determination (figures 7.11 through 7.13 ). The kaon flight trajectory

(figure 7.14), and the overall kaon momentum spectrum (figure 7.15) were also

modeled with a high degree of accuracy. Note that the data/Monte Carlo plots

include linear best fits with the fit values and error for the slope (A1) and y-

intercept (A0). In most cases, these values indicate that the best-fit line is within

∼ 1σ of flatness.
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Figure 7.2: π+π− combined momentum distribution (data, Monte Carlo).
Upper plot: Nevents/(1.8 GeV) vs. Pπ+π− (GeV/c). Crosses represent data.
Lower plot: Data/MC ratio vs. Pπ+π− (GeV/c).
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Figure 7.3: π+π− invariant mass distribution (data, Monte Carlo).
Upper plot: Nevents/(2.5MeV/c) vs. Mπ+π− (GeV). Crosses represent data.
Lower plot: Data/MC ratio vs. Mπ+π− (GeV).
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Figure 7.4: π+π−π0 kinematic (“pp0kine”) distribution (data, Monte Carlo).
Upper plot: Nevents/(6×10−4(GeV/c)2) vs. pp0kine (GeV/c)2 . Crosses represent
data.
Lower plot: Data/MC ratio vs. pp0kine (GeV/c)2.
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Figure 7.5: Two track hit illumination for Drift Chamber 1 (data, MC).
Upper plot: Nevents/(2 cm) vs. DC y-intercept (m). Crosses represent data.
Lower plot: Data/MC ratio vs. DC y-intercept (m).
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Figure 7.6: LAB frame photon energy distribution (data, Monte Carlo).
Upper plot: Nevents/(0.4 GeV) vs. Eγ (GeV). Crosses represent data.
Lower plot: Data/MC ratio vs. Eγ (GeV).
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Figure 7.7: Photon X position in the Calorimeter (data, Monte Carlo).
Upper plot: Nevents/cm vs. |X| (m). Crosses represent data.
Lower plot: Data/MC ratio vs. |X| (m).
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Figure 7.8: Photon Y position in the Calorimeter (data, Monte Carlo).
Upper plot: Nevents/cm vs. |Y | (m). Crosses represent data.
Lower plot: Data/MC ratio vs. |Y | (m).
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Figure 7.9: Track-photon separation in the calorimeter (data, Monte Carlo).
Upper plot: Nevents/(1.3 cm) vs. separation distance (m). Crosses are data.
Lower plot: Data/MC ratio vs. separation distance (m).
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Figure 7.10: Track separation in the calorimeter (data, Monte Carlo).
Upper plot: Nevents/(2 cm) vs. track separation (m). Crosses are data.
Lower plot: Data/MC ratio vs. track separation (m).
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Figure 7.11: Vertex X position (data, Monte Carlo).
Upper plot: Nevents/(0.4 cm) vs. Vertex X (m). Crosses represent data.
Lower plot: Data/MC ratio vs. Vertex X (m).
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Figure 7.12: Vertex Y position (data, Monte Carlo).
Upper plot: Nevents/cm vs. Vertex Y (m). Crosses represent data.
Lower plot: Data/MC ratio vs. Vertex Y (m).
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Figure 7.13: Vertex Z position (data, Monte Carlo).
Upper plot: Nevents/(0.9 cm) vs. Vertex Z (m). Crosses represent data.
Lower plot: Data/MC ratio vs. Vertex Z (m).
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Figure 7.14: Kaon transverse momentum squared (data, Monte Carlo).
Upper plot: Nevents/(3 × 10−6(GeV/c)2) vs. p2

T (GeV/c)2. Crosses are data.
Lower plot: Data/MC ratio vs. p2

T (GeV/c)2.
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Figure 7.15: π+π−γ combined momentum distribution (data, Monte Carlo).
Upper plot: Nevents/(1.8 GeV) vs. Pπ+π−γ (GeV)̧. Crosses represent data.
Lower plot: Data/MC ratio vs. Pπ+π−γ (GeV)̧.



Chapter 8

Extraction of Fit Parameters with
Statistical Uncertainty

8.1 Extraction of the Best-fit Parameters

As per section 7.3.2, a nominal baseline Monte Carlo of 50Ndata events was gen-

erated with input parameter values “in the vicinity” of the data (g̃M1 = 1.20, a1

a2

= -0.737, and GE1 = 0.04). The Monte Carlo sample was run through the same

triggers, crunch, and analysis code as the data. The phase space variables1 (ω and

cos θ) of the events passing the final cuts were written out to an output file, which

in turn became the baseline distribution for the likelihood fitting and reweighting

procedure.

The statistical error was then determined using a 3-D grid around the maximum

log likelihood value, as described in section 7.3.3. A plot illustrating the locus of

g̃M1 and a1

a2
grid values that produce a log-likelihood within 0.5 of the maximum is

plotted in figure 8.1. Fitting the data in this manner produced results summarized

in table 8.1.

Once the parameter values had been extracted, a new Monte Carlo was gener-

1recall that ω was defined as the photon energy in the kaon CM frame, and cos θ was defined
as the angle between the π+ and γ in the π+π− CM frame.

89
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Fit Parameter Likelihood Best-fit σoutput (stat) σbin−size σnet (stat)
g̃M1 1.229 0.035 0.003 0.035

a1

a2
-0.733 0.0072 0.0005 0.0072

GE1 (0.00) (≈ 0.07) 0.003 (≈ 0.07)

Table 8.1: Best-fit Parameter Values

ated using the new fit values as input. The phase space variable distributions that

were then produced with this new Monte Carlo (figures 8.2 and 8.3 ) demonstrated

an extremely high level of agreement with data.

Note that the value of GE1 and its statistical error are listed in paratheses,

since the final GE1 will only be quoted as an upper limit, and its error bars will be

determined more accurately via the method of Feldman and Cousins later in this

chapter.

8.2 Determination of the statistical GE1 Upper

Limit

Although the data fit routine produced an approximate statistical (1σ) upper limit

on GE1 of ∼ 0.07, the fact that GE1 must be expressed as an upper limit, made it

desirable to obtain a more conservative upper bound using the method of Feldman

and Cousins [40]. To do this, nine data-sized Monte Carlos were generated using

the best-fit values for g̃M1 and a1

a2
(i.e. g̃M1 = 1.23 and a1

a2
= -0.733), and various

values of GE1 , ranging from GE1 = 0.11 to GE1 = 0.29.

Each file was analyzed identically to the data, including analysis cuts, likelihood

fitting, and error bar determination. The points were then plotted (figure 8.4 ) as

Measured GE1 vs Generated GE1 , using 1.28 sigma error bars2. A best-fit line

was then made from the lower limits of the nine plotted points. This best-fit line

2A 1.28 sigma deviation in a Gaussian distribution encompasses 40% of events on each side of
the mean. Therefore, 10% of events on each side of the mean are outside the 1.28 sigma range.
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Figure 8.1: A scatterplot representing the 2-D cross-section (g̃M1 vs a1

a2
) of the

3-D ”error ellipsoid” defined by parameter value combinations that produce log
likelihoods within 0.5 of the maximum. An ellipse representing the approximate
contour is drawn in for clarity.
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Figure 8.2: Distribution of phase space variable ω (data, Monte Carlo).
Upper plot: Nevents/(1.8 MeV) vs. ω (GeV). Crosses represent data.
Lower plot: Data/MC ratio vs. ω (GeV).
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Figure 8.3: Distribution of phase space variable cos θ (data, Monte Carlo).
Upper plot: Nevents/0.02 vs. cos θ. Crosses represent data.
Lower plot: Data/MC ratio vs. cos θ.
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denotes the 90% confidence level (CL) boundary, such that a given measurement

of GE1 has a 90% probability of being above the line.

Since the best-fit regime in this analysis produced a measurement of GE1 = 0.0,

the 90% CL upper limit was determined as the X-intercept of the best-fit line at

0.11.

8.3 Verification of the Likelihood Fit Procedure

Once the likelihood fitting code was written, extensive testing was performed to

verify that it was implemented correctly. The initial study done to increase confi-

dence in the measuring procedure used 18 individual, data-sized Monte Carlos that

were generated over a fairly broad range parameter values (the generation values

are summarized in table 8.2).

The absolute difference between the generated and measured values of the three

parameters was plotted for each file. In order to determine the approximate sta-

tistical significance of the agreement, each data point is plotted relative to the

grid-determined error3 on the nominal (i.e. actual data) best-fit. In other words, a

given fit parameter value “X” ( X ≡ {g̃M1,
a1

a2
, GE1} ) is plotted as

|Xgenerated − Xmeasured|
σX(data)

(8.1)

Therefore, roughly speaking,4 68% of the plotted plots should have a ratio ≤ 1.0

and 98% should have a ratio ≤ 2.0. So, we therefore expected ∼12 of the 18

datapoints to be be fitted within 1σ of their generated values and ∼17-18 of the

3see table 8.1
4Note that this was only an approximation, since, in reality, it was expected that different

regions of phase space could be slightly more or slightly less sensitive to a given parameter.
Therefore, the exact error bars associated with a given point on the plot might be slightly larger
or slightly smaller than the error calculated for the data. Nevertheless, this discrepancy was
believed to be irrelevant for the purposes of this study.
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Figure 8.4: Feldman and Cousins upper limit plot of Measured GE1 vs Generated
GE1 at 90% CL . Error bars plotted on individual points are 1.28σ in width.
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Test MC ID Generated g̃M1 Generated a1

a2
Generated GE1

1 1.00 -0.700 0.00
2 1.00 -0.740 0.00
3 1.00 -0.780 0.00
4 1.20 -0.700 0.00
5 1.20 -0.740 0.00
6 1.20 -0.780 0.00
7 1.45 -0.700 0.00
8 1.45 -0.740 0.00
9 1.45 -0.780 0.00
10 1.00 -0.700 0.07
11 1.00 -0.740 0.07
12 1.00 -0.780 0.07
13 1.20 -0.700 0.07
14 1.20 -0.740 0.07
15 1.20 -0.780 0.07
16 1.45 -0.700 0.07
17 1.45 -0.740 0.07
18 1.45 -0.780 0.07

Table 8.2: Generated parameter values for the 18 trial Monte Carlo files used in
the initial likelihood fitter verification study.
The absolute difference between the generated and measured values of these test
Monte Carlos are plotted in figures 8.5 through 8.7.
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points to be fitted within 2σ. As one can see from figures 8.5 to 8.7, that was, in

fact, what we observed.

To bolster the previous study and to obtain a much more quantative mea-

surement of the accuracy of the fit procedure, fits were made on sets of 25 to 50

data-sized Monte Carlo files. Individual files within a given set were all generated

at the same parameter values, and each file in the set was fit using the same fit

program as the data. The fit value average (< X >), standard deviation(σX) , and

standard deviation on the average (σ<X> = σX/N) over the N samples (N = 25

or 50) were then calculated for each set. The results are summarized in tables 8.3

and 8.4. The accuracy of the fitting regime was then determined via the absolute

difference (∆X) between the input and measured values, given by

∆X = |Xgen − Xmeasured| (8.2)

The absolute difference was then divided by the error on the measured average

(σ<X>) to give statistical significance to the fit accuracy. The final results of the

study (summarized in table 8.4) demonstrated that the fitter worked as designed,

generally reproducing the input values, within 1 to 2 standard deviations of the

average. However, since the results were generally worst-case just outside the 1σ

limit of expected statistical fluctuations, the maximum deviations were assigned

as systematic errors and were added to the list of errors in table 9.12 in the next

chapter.
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Figure 8.5: Deviation (in σ) between input and measured values of g̃M1 for 18 data-
sized trial Monte Carlos. Plot is Sigma Deviation vs. Monte Carlo file number (1-
18).
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Figure 8.6: Deviation (in σ) between input and measured values of a1

a2
for 18 data-

sized trial Monte Carlos. Plot is Sigma Deviation vs. Monte Carlo file number (1-
18).
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Figure 8.7: Deviation (in σ) between input and measured values of GE1 for 18 data-
sized trial Monte Carlos. Plot is Sigma Deviation vs. Monte Carlo file number (1-
18).
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Generated Values Measured Values (Ave) Error on the Average
Set Nfiles g̃M1

a1
a2

GE1 g̃M1
a1
a2

GE1 σ<g̃M1> σ<
a1
a2

> σ<GE1>

set 1 50 1.20 -0.737 0.04 1.207 -0.7314 0.055 0.005 0.0012 0.009
set 2 25 1.05 -0.775 0.07 1.056 -0.7728 0.053 0.005 0.0016 0.009
set 3 25 1.20 -0.733 0.00 1.216 -0.7353 0.024 0.010 0.0023 0.008
set 4 25 1.08 -0.755 0.01 1.071 -0.7565 0.023 0.007 0.0018 0.008

Table 8.3: Comparison of input & generated values at 4 different selections of input
values.

∆X ≡ | < X > −Xgen| σ<X> Deviation
Sample Set |∆g̃M1

| |∆a1
a2

| |∆GE1
| g̃M1

a1

a2
GE1

Set 1 0.007 0.0056 0.015 1.40 4.67 1.67
Set 2 0.006 0.0022 0.017 1.20 1.38 1.89
Set 3 0.014 0.0023 0.024 1.40 1.00 3.00
Set 4 0.009 0.0015 0.013 1.29 0.83 1.63

Max Shift 0.014 0.0056 0.024 - - -

Table 8.4: Sigma Deviation of Monte Carlo sample sets described in table 8.3.
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Systematics Studies

9.1 Systematic Uncertainty of the Likelihood Fit

Program due to Different Baseline Monte Car-

los

One of the most obvious systematic errors to determine was the extent to which

the reweighting of a single, “baseline” Monte Carlo file biased the final answer.

To study this effect, three Monte Carlo files were generated with the same input

parameter values (g̃M1 = 1.20, a1

a2
= −0.737, GE1 = 0.04) and the same number of

events (50 times the data) as the nominal baseline file– in other words, the files

differ from the nominal only by a random seed. The best-fit of the data sample

was then recomputed using each of the three new baseline files in order to estimate

the statistical fluctuations associated with the generation of a Monte Carlo with a

given set of input parameter values. The results are summarized in table 9.1.

Making the assumption that the four jobs are relatively representative of the

distribution of values, the standard deviation of the four fit results was taken as

the statistical uncertainty on the generation of the nominal 50Ndata event Monte

Carlo. The variations, average, and standard deviations of the results are shown in

table 9.1.
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Baseline Monte Carlo g̃M1
a1

a2
GE1

original (nominal) MC 1.22863603 -0.73295301 0.0000
new MC #1 1.23510277 -0.73167145 0.0000
new MC #2 1.22731066 -0.73350447 0.0000
new MC #3 1.22827411 -0.73339522 0.0035

ave 1.22983089 -0.73288104 0.0009
std dev 0.0030820 0.000728 0.0015

Table 9.1: Likelihood fit results for data fit by four Monte Carlo files generated at
“nominal” input values that differ only by a random seed.

Generated Values ∆ from nominal fit result
Baseline MC g̃M1

a1

a2
GE1 |∆g̃M1

| |∆a1
a2

| |∆GE1
|

(nominal) 1.20 -0.737 0.04 0.0000 0.0000 0.00
Baseline A 1.35 -0.733 0.04 0.0043 0.0008 0.00
Baseline B 1.05 -0.733 0.04 0.0093 0.0021 0.00
Baseline C 1.20 -0.710 0.04 0.0035 0.0010 0.00
Baseline D 1.20 -0.770 0.04 0.0073 0.0011 0.00
Baseline E 1.20 -0.733 0.12 0.0078 0.0012 0.00
Baseline F 1.05 -0.775 0.07 0.0006 0.0001 0.007
Baseline G 1.23 -0.733 0.30 0.0013 0.0009 0.013

Max Dev from nominal - - - 0.0093 0.0021 0.013
Syst Error assigned - - - 0.0093 0.0021 0.013

Table 9.2: Shift in fit parameter values due to the change in the baseline Monte
Carlo used in the likelihood fit.

The data was then re-fit using seven other 50Ndata event Monte Carlos with

varying parameter values. The generated and measured values of each of the seven

files is summarized in table 9.2. Since the maximum deviation in the fit parame-

ters in table 9.2 was slightly greater than the corresponding statistical errors from

table 9.1, we assigned the deviations as the systematic error associated with the

choice of a particular baseline Monte Carlo file.
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9.2 Systematic Error in the Kaon Momentum Slope

One of the most critical elements of this analysis was the ability of the Monte Carlo

to simulate the kaon momentum spectrum. Figure 9.1 shows the agreement between

data and Monte Carlo in this variable. A common method of kaon momentum

correction is to directly reweight the events to make the data/MC slope flat and

then base all other measurements relative to that correction. However, in this

particular analysis, it was not possible to make use of this technique, since the

phase space parameter that we wished to fit (the kaon COM photon energy, ω) was

correlated with the kaon momentum.

Instead, in order to obtain the best possible agreement, the kaon momentum

spectrum determined from the KL → π+π− decay was input into the KL →

π+π−γ Monte Carlo generator. Thus the Monte Carlo was obtained independently

from the KL → π+π−γ data and therefore did not bias the determination of

the final fit parameters from the KL → π+π−γ mode. The slope (M) and y-

intercept (b) of the kaon momentum data/MC ratio in Figure 9.1 are given by

M = (−1.85 ± 1.39) × 10−4 and b = 1.010 ± 0.009, respectively.

Although the data/Monte Carlo ratio appeared to agree fairly well, it was not

precisely the perfectly flat spectrum indicative of perfect data, Monte Carlo agree-

ment. It was therefore necessary to determine the effect that this deviation from

flatness had upon the final fit parameter values. To study this, the “baseline” Monte

Carlo used in the likelihood fit had its kaon momentum spectrum reweighted by M

and b, and the data was then refit using this reweighted Monte Carlo. The results

are summarized in table 9.3. The systematic error assigned is the maximum devi-

ation in each fit parameter from its nominal value ( ∆g̃M1
= 0.003, ∆a1

a2

= 0.0004,

and ∆GE1
= 0.005).
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Figure 9.1: π+π−γ combined momentum distribution (data, Monte Carlo).
Upper plot: Nevents/(1.8 GeV) vs. Pπ+π−γ (GeV)̧. Crosses represent data.
Lower plot: Data/MC ratio vs. Pπ+π−γ (GeV)̧.
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Reweighting ∆g̃M1
∆a1

a2

∆GE1

M, b +0.0010 -0.00012 -0.002
M + σM , b + σb -0.0009 +0.00011 +0.002
M - σM , b + σb +0.0031 -0.00039 -0.005
M + σM , b - σb -0.0009 +0.00011 +0.002
M - σM , b - σb +0.0031 -0.00040 -0.005

Max Deviation from nominal 0.003 0.0004 0.005
Systematic Error Assigned 0.003 0.0004 0.005

Table 9.3: Systematic error on the kaon momentum slope

9.3 Systematic Error Due to Choice of Physics

Analysis Cuts

One important consideration was to account for the possibility that a particular

choice of analysis cuts in some way biases the final result by over-emphasizing (or

under-emphasizing) a particular region of phase space or by somehow disturbing

agreement of data and Monte Carlo. The size of this effect on a given parameter

value”X” ( X = {g̃M1,
a1

a2
, GE1}) was determined by varying the analysis cuts “in the

vicinity” of the nominal cut choices and then recalculating the data best-fit results

and error bars. Although the definition of “vicinity” was somewhat unique to each

analysis cut variable, the regions of variation were generally constrained by crunch

cuts, detector fiducial considerations, and the requirement that a sample produced

by a tightened cut retain at least about a third of the events of the nominal data

sample.

Once the measurements of the cut-modified samples was complete, the fit pa-

rameter shift (S) in the final result (where S ≡ |Xcut−varied − Xnominal|) was com-

puted. If the parameter shift was larger than the expected statistical fluctuation

(σS), then that shift was interpreted as a non-zero systematic error.

Note that this was a non-trivial process, since running the complete analysis
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and error bar determination on a single choice of cuts required 1 to 4 weeks of CPU

to complete.

One subtlety of this analysis was that the nominal and cut-varied samples were

highly correlated. Therefore, the statistical error on the shift was smaller than the

statistical error on the cut-varied sample itself. Specifically, the error on the shift

was given by1

σS =
√
|σ2

cut−varied − σ2
nominal| (9.1)

The final size of the systematic error (∆S) was calculated using a dual case

scenario. In Case I, the shift was within statistical fluctuations ( i.e. S ≤ σS ), and

hence no systematic error was assigned ( i.e. ∆S = 0). In Case II, the shift was

outside the expected range of fluctuations (S > σS) and therefore was assigned an

error ∆S such that the range (-∆S, ∆S) includes 68.3% of the area of a Gaussian

with mean S and width σS:

1

σS

√
2π

∫ ∆S

−∆S

dx exp

[
−(x − S)2

2σ2
S

]
= 0.683 (9.2)

Plots of the shift in parameter values vs. analysis cut choice are shown in figures

( 9.2) through ( 9.11). Error bars on individual data points represent the statistical

error on the shift (σS). Horizontal dotted lines representing the size of the statistical

error on the fit parameters from the nominal data fit (see table8.1) are also included

on each plot for scale.

Note that the data points at the nominal cut choice values have a small σS

error bar assigned, even though the “nominal” and “cutvaried” samples for these

instances are identical. This is because each data point includes an error bar re-

1see Appendix B for a derivation of this result
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flecting the uncertainty associated with the finite grid size used in the primary

statistical error on the measurement. The assigned systematic errors are summa-

rized in table 9.6.

It is important to note, however, that two analysis cut variables, the kaon mo-

mentum and vertex Z position, had error bars assigned in a manner that deviated

slightly from the prescription previously described. These two particular distri-

butions were highly correlated to both one another and to the distribution of the

phase space itself. Therefore, any observed shift in a measured parameter could

be due to a true systematic effect in the measurement technique or simply to the

fact that the tightened cuts are confining the measured events to a limited region

of phase space.

Recall, however, that the quality of data, Monte Carlo agreement in the kaon

momentum spectrum (and hence essentially vertex Z as well) was already directly

assessed in section 9.2, and a separate systematic error for this quantity was com-

puted. Since the systematic calculated from that study was significantly smaller

than the one derived from the variation of the kaon momentum cut, it was therefore

concluded that the limited phase space was, in fact, the dominant contributor to

the kaon momentum and vertex Z shifts observed in figures 9.7 and 9.9.

Based on this, it was concluded that blindly applying the previously described

”∆S prescription” to the kaon momentum and vertex Z plots would result in the

assignation of unrealistically large systematic errors. As a result, the decision was

made to shrink the relevant cut range ”vicinity” for these two variables. For ref-

erence, a list of the original kaon momentum and vertex Z cut variations (and the

sizes of the corresponding event samples) are included as table 9.4.

In practice, “shrinking the vicinity” meant that the ∆S prescription was only
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Variable Cut Selection
1 2 3 4 5

PKaon cut (GeV/c) 20.0 25.0 35.0 55.0 75.0
Nevents 113051 112140 102297 60007 25682

Nevents/Nnominal 1.01 1.0 0.91 0.53 0.23

Vertex Z cut (m) 110.0 120.0 130.0 140.0 N/A
Nevents 118269 112140 79482 46128 N/A

Nevents/Nnominal 1.05 1.0 0.71 0.41 N/A

Table 9.4: Number of events for each kaon momentum and vertex Z cut variation.

∆S (Standard Procedure) ∆S (Modified Procedure)
Analysis Variable σg̃M1

σa1
a2

σGE1
σg̃M1

σa1
a2

σGE1

Kaon Momentum 0.082 0.016 0.0 0.029 0.0 0.0
Vertex Z 0.089 0.016 0.0 0.034 0.0056 0.0

Table 9.5: Effects of modified ∆S procedure on Pkaon and vertex Z

applied to the first 3 points on each of the two plots2 (corresponding to minimum

kaon momentum of 35 GeV and a minimum vertex Z of 130 m). The differences in

systematic errors assigned in the standard and modified procedures are summarized

in table 9.5 , and the final assigned systematic errors are included in table 9.6.

9.4 Background Effects

Because the KL → π+π−γ branching ratio is relatively small ( ∼ 5 × 10−5 ),

accurately assessing background effects from direct generation of all possible sources

was difficult3. It was decided that the most practical way to measure these effects

was to use the distribution of the “wings” of the kaon mass peak. The left wing

region was defined as 0.47000 < Mπ+π−γ < 0.48967 GeV and the right wing region

was defined as 0.50567 < Mπ+π−γ < 0.55000 GeV.

2For perspective, keep in mind that the fiducial decay volume ends at Z ≈ 160m.
3For example, it was difficult to accurately simulate events that were scattered off the regen-

erator into the vacuum beam.
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Figure 9.2: Fit parameter shift S vs. Fusion χ2 Cut Selection
(from top to bottom): g̃M1 , a1

a2
, GE1

Dotted lines are nominal data stat errors (table 8.1), included for scale.
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Figure 9.3: Fit parameter shift S vs. CsI Inner Fiducial Cut
(from top to bottom): g̃M1 , a1

a2
, GE1

Dotted lines are nominal data stat errors (table 8.1), included for scale.
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Figure 9.4: Fit parameter shift S vs. CsI Outer Fiducial Cut
(from top to bottom): g̃M1 , a1

a2
, GE1

Dotted lines are nominal data stat errors (table 8.1), included for scale.
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Figure 9.5: Fit parameter shift S vs. P 2
transverse Cut (GeV/c)2

(from top to bottom): g̃M1 , a1

a2
, GE1

Dotted lines are nominal data stat errors (table 8.1), included for scale.
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Figure 9.6: Fit parameter shift S vs. PP0KINE Cut (GeV/c)2

(from top to bottom): g̃M1 , a1

a2
, GE1

Dotted lines are nominal data stat errors (table 8.1), included for scale.
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Figure 9.7: Fit parameter shift S vs. Kaon Momentum Cut (GeV)
(from top to bottom): g̃M1 , a1

a2
, GE1

Dotted lines are nominal data stat errors (table 8.1), included for scale.
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Figure 9.8: Fit parameter shift S vs. Track-Photon Separation Cut (meters)
(from top to bottom): g̃M1 , a1

a2
, GE1

Dotted lines are nominal data stat errors (table 8.1), included for scale.
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Figure 9.9: Fit parameter shift S vs. Vertex Z Cut (meters)
(from top to bottom): g̃M1 , a1

a2
, GE1

Dotted lines are nominal data stat errors (table 8.1), included for scale.
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Figure 9.10: Fit parameter shift S vs. Lab Photon Energy Cut (GeV)
(from top to bottom): g̃M1 , a1

a2
, GE1

Dotted lines are nominal data stat errors (table 8.1), included for scale.
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Figure 9.11: Fit parameter shift S vs. Pion Energy/Momentum Cut (c)
(from top to bottom): g̃M1 , a1

a2
, GE1

Dotted lines are nominal data stat errors (table 8.1), included for scale.
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Varied Analysis Cut σg̃M1
σa1

a2

σGE1

Fusion χ2 0.0 0.0 0.0
Inner CsI Ring 0.0 0.0 0.0
Outer CsI Ring 0.0 0.0 0.0

P 2
t 0.012 0.0 0.0

pp0kine 0.0 0.0 0.0
PKaon 0.029 0.0 0.0

Track-γ sep 0.0 0.0 0.0
Vertex Z 0.034 0.0056 0.0

E
(lab)
γ 0.054 0.0077 0.0

pion E/p 0.0 0.0 0.0

Table 9.6: Systematic errors assigned from the variation of cuts

9.4.1 Fraction of Background in the KL → π+π−γ Event
Sample

To determine the size of the background, the combined π+π−γ invariant mass was

plotted with all cuts applied except the kaon mass cut. The distribution to the left

and right of the events accepted in the final sample were fit with an exponential (i.e.

a straight line on the log plot) to estimate the size of the background underneath

the kaon mass peak.

The left-side wing fit predicted 789 background events inside the kaon mass cut,

and the right-side wing fit predicted 618 events. Therefore, based on a final event

size of Nd = 112, 140 final events, this leads to a background of roughly 0.55% -

0.70%.

9.4.2 Effect of the Background on the Final Fit Result

Since the data was fit event by event (as opposed to a general histogram distri-

bution), background subtraction was not possible. Therefore, it was necessary to

determine to what extent the background in the event sample affected the final fit

result.
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MC Input g̃M1
a1

a2
GE1

sample 1 shift 0.0325 0.0065 0.036
sample 2 shift 0.0339 0.0067 0.037
sample 3 shift 0.0355 0.0062 0.045

max shift 0.0355 0.0067 0.045
syst error assigned 0.0355 0.0067 0.045

Table 9.7: Effect of the addition of 800 wing events to the final data sample

To do this, instead of subtracting out the background, additional background

events (from the wing regions) were added to the final event sample in order to

simulate the effect of the existing background. 2400 wing-region events were divided

into 3 independent 800-event samples, so that each sample contained slightly more

events than the upper limit of the background estimate (789 events).

Each of the three samples were then separately combined with the nominal data

sample and the combined samples were refit with the likelihood code. The deviation

between the fit results for the nominal data sample (with no background added)

and the fit results for each of the three wing-event-added sample was recorded. The

background systematic error for each fit parameter (g̃M1 , a1

a2
, GE1 ) was determined

as the maximum deviation out of the three trials. The results are summarized in

table 9.7.

9.4.3 Contributions to the Background

The vast majority of background events are believed to come from the following four

modes: KL → π+π−π0, KL → π+π− , Ke3 (KL → πeν ) , and Kµ3 (KL → πµν )

The KL → π+π−π0 decay (where π0 → γγ ) was by far the primary target for

background suppression in the analysis and was responsible for the rise to the left

of the KL → π+π−γ invariant mass in figure 9.12. Events from this decay can be

mistaken for KL → π+π−γ events when one photon was lost and/or when both pho-
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Figure 9.12: Left wing and right wing exponential fits to data.
Plot is log(Nevents/0.8 MeV) vs. Mπ+π−γ (GeV).
The nominal kaon mass cuts are inhibited.



123

tons are lost and an accidental photon was reconstructed in their place. Although

these types of events were heavily suppressed by the photon vetoes, the transverse

momentum cut, and the kaon mass cut, the high KL → π+π−π0 branching ratio

(∼ 2800 × ΓKL→π+π−γ) still makes these events a fairly serious issue. Fortunately,

the so-called “pp0kine” cut which cuts on the kinematics of this decay (see sec-

tion 5.4.3 ) has proven highly successful in suppressing the π+π−π0 background

down to the size of the other backgrounds.

To verify the effectiveness of the π+π−π0 suppression, a Monte Carlo sample

equivalent to roughly one quarter of the net KL → π+π−π0 flux present in the

data was generated. This sample ( consisting of ≈ 3 billion generated events!) took

2-3 months to generate, crunch (twice!), and filter.

Out of the 3 billion events, only 30±6 events survived all analysis cuts! Scaling

this up by a factor of 4 leads to an estimate of 120±24 KL → π+π−π0 background

events in the final π+π−γ event sample– a real testament to the effectiveness of

the “pp0kine” cut!

Monte Carlo was also generated to examine the effect of events from the KL →

π+π− decay channel, which can be a background to KL → π+π−γ when the two

pions are combined with an accidental photon. Since the KL → π+π− branching

ratio is only about ∼ 50x that of KL → π+π−γ , it was possible to generate a

fairly large sample ( ∼ 80% of the equivalent of a full data flux) of KL → π+π−

events to study. However, by the same token, the relatively small branching ratio

also made it an unlikely candidate to be a major contributor to the background

after kaon mass and transverse momentum suppression cuts were applied.

After all analysis cuts were applied to the KL → π+π− Monte Carlo sample,

a grand total of 1 ± 1 events remained. Scaling this up to a full flux leads to an

estimate of 1.25 ± 1.25 KL → π+π− background events.
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The remaining ∼ 600 events in the background are primarily due to the semi-

leptonic modes, Ke3 and Kµ3 . Events from these modes become background to

KL → π+π−γ when the charged lepton (the electron for Ke3 and the muon for

Kµ3 ) is misidentified as a pion and an accidental photon is reconstructed in place

of the neutrino4. Although these modes are highly suppressed by e.g. the kaon mass

cut, the Energy/momentum cut, the muon vetoes, and the transverse momentum

cut, they are nevertheless relevant because they have branching ratios that are

∼6000-9000x that of the signal mode (i.e. 2-3x higher, even, than ΓKL→π+π−π0 ).

Therefore a ∼ 10−8 suppression of the semi-leptonic modes would still allow

sufficient event acceptance to account for the remaining background events observed

from wing extrapolations.

9.5 Effects of Variations over Time

Since the 1997 data was taken over a time span of roughly three months, it was

important to determine whether the measurement of the parameter values shifted

over the course of the run.

To investigate this, the data was divided into three temporally consecutive and

statistically independent subsamples (each one containing roughly a month’s-worth

of data running), and then plotted in figure 9.13. Since the observed parameter

shifts of the three subsamples were all within statistical fluctuations, no systematic

error was assigned for this effect.

4note that the neutrino is always unreconstructed, since the KTeV detector is not designed to
detect neutrinos
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Figure 9.13: Variation of Parameter Values Over the Course of the 1997 Run
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9.6 Effects of KS Contamination

Since events with high kaon momentum ( > 160 GeV) were excluded from the

final event sample, KS events were expected to only have a very minimal effect on

the final answer. This assumption was tested using a KL → π+π−γ Monte Carlo

recently developed by M. Ronquest [41] for direct CP Violation studies that code

allows the user to explicitly control KL and KS mixing during generation.

A total of 40 data-sized Monte Carlo files were generated using this Monte Carlo,

20 of which were pure-KL samples and 20 of which include full KL, KS mixing.

All 40 samples were generated at the same parameter values (g̃M1 = 1.19, a1

a2
=

-0.740, and GE1 = 0.01) and then run through the standard analysis and likelihood

fit procedures in place of data.

The twenty pure-KL samples were averaged together and the twenty KL, KS

mixed samples were averaged together. The shift between the two mean values (S)

was then interpreted as the size of the KS contribution to the final result. That is:

S = | < XKL
> − < XMix > | (9.3)

where XKL
is the best fit value of a given fit parameter “X” ( X = {g̃M1 , a1

a2
,

GE1 } ) for a pure-KL sample, and XMix is the corresponding quantity for a KL, KS

mixed sample.

The statistical fluctuation on the shift (σS) is given by

σS =
√

σ2
<XKL

> + σ2
<XMix> (9.4)

where

σ2
<XKL

> =
σ2

XKL

N
and σ2

<XMix> =
σ2

XMix

N

So equation (9.4) becomes

σS =

√
σ2

XKL

N
+

σ2
XMix

N
(9.5)
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g̃M1
a1

a2
GE1

S ≡ | < XKL
> − < XMix > | 0.007 0.0019 0.013

σ<XKL
> 0.009 0.0014 0.013

σ<XMix> 0.010 0.0021 0.012
σS 0.013 0.0025 0.018

Systematic Error Assigned (∆S) 0.0 0.0 0.0

Table 9.8: Summary of kaon contamination study results

where N = 20 in this particular case. The results of the study are summarized

in table 9.8.

Since the observed shift between the mean values was within statistical fluctua-

tions for all three fit parameters, the effect of KS contamination on the final answer

was deemed negligible within the range of statistical sensitivity, and a systematic

error of ∆S = 0.0 was assigned for each of the three parameters.

9.7 Uncertainties on Constant Parameters Input

In the Matrix Element

The accuracy of the Matrix Element Probability Function depends critically upon

the accuracy of parameter values measured by previous experiments, such as η+−

,that are input as constants into the expression for the differential decay rate ( equa-

tions 1.48 and 1.52 ).

The largest errors arise from the uncertainty on the measurements of η+− and

the π+π− phase shifts, δ0
0 and δ1

1 . The effect of these uncertainties on the final

answer was ascertained by generating new “baseline” Monte Carlo with the same

fit parameter values as the nominal (g̃M1 = 1.20, a1

a2
= −0.737, GE1 = 0.04), but

with a given input parameter ( η+− , δ0
0 , δ1

1 ) increased or decreased by 1σ.



128

9.7.1 Effect of the Uncertainty in η+−

The amplitude of the Inner Bremmstrahlung term in equation 1.48 is proportional

to the CP-Violation parameter η+− , where η+− is defined as

η+− = ε

(
1 +

ε
′

ε

)
≈ ε (9.6)

and ε = (2.282 + / − 0.017) × 10−3 [42]

The effect that this uncertainty in the η+− value had on the final measurement

of the fit parameters (g̃M1 , a1

a2
, GE1 ) was determined by generating new “baseline”

Monte Carlos identical to the nominal baseline, except with η+− shifted by ±1σ.

The data was then refit with these new Monte Carlos and the maximum observed

shifts for each fit parameter from the nominal data fit was interpreted as the effect

of the η+− uncertainty on the final answer. These maximum shifts were then

compared to the expected statistical fluctuation on Monte Carlo files that differed

only by a random seed ( see table 9.1), and any shift greater than the statistical

fluctuation was assigned as the systematic error due to uncertainty in η+− . The

result is summarized in table 9.9.

9.7.2 Effect of the Uncertainty in the Pion Phase Shifts

The expressions for the pion scattering phase shifts δ0
0(M

2
K) and δ1

1(M
2
ππ) in the

KL → π+π−γ differential decay rate are calculated using the Colangelo et al. pa-

rameterization [43], which can be summarized for a particle of mass MX as

tan δ0
0(M

2
X) =

√
1 − 4M2

π

M2
X

(
A0

0 + B0
0q

2 + ...
) (

4M2
π − s0

0

M2
X − s0

0

)
(9.7a)

tan δ1
1(M

2
X) =

√
1 − 4M2

π

M2
X

[
(q2)(A1

1 + ...)
] (

4M2
π − s1

1

M2
X − s1

1

)
(9.7b)
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where

q2(M2
X) =

1

4

(
M2

X

M2
π

)
− 1 (9.8)

A0
0 = 0.220 + / − 0.005

B0
0 = 0.268 + / − 0.006 s0

0 = 36.77M2
π

A1
1 = 0.0379 + / − 0.0005 s1

1 = 30.72M2
π

By varying the constants A0
0 and B0

0 in equation 9.7 by 1σ in either direction

and looking for the maximum deviation, the error in δ0
0(M

2
K) can be expressed as

δ0
0(M

2
K) = 0.684 ± 0.012 (9.9)

However, since Mππ = MK(MK − 2ω), Mππ is intrinsically a function of the

phase space variable ω (the photon energy in the kaon center of mass frame), it was

therefore not possible to compute a single value for δ1
1 in the same way as δ0

0 .

As a result, the “baseline” Monte Carlo was varied by δ1
1 = δ1

1(Mππ, A1
1 ± σA1

1
),

rather than trying to calculate δ1
1 and σδ1

1
explicitly.

A systematic error due to changes in δ0
0 and δ1

1 is assigned in a manner totally

analogous to the method described for η+− . Table 9.9 summarizes the results for

all three Monte Carlo input quantities (δ0
0 , δ1

1 , and η+− ).

9.8 Uncertainty in Event Reconstruction Resolu-

tion

A very good estimate of the effect that detector reconstruction resolution has on

the final fit values can be obtained by fitting a given Monte Carlo sample twice:

once using the generated (“MCLIST”) values of the phase space variables (ω, cos θ)

and once using the values produced after event reconstruction for each event.

This type of fit was done on the same sets of Monte Carlo used in section 8.3

in the previous chapter. An average and standard deviation for the MCLIST fits
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Monte Carlo Input Parameter g̃M1
a1

a2
GE1

δ0
0 + σδ0

0
shift 0.0111 0.00209 0.0000

δ0
0 − σδ0

0
shift 0.0031 0.00052 0.0000

δ1
1(A

1
1 + σA1

1
) shift 0.0000 0.00040 0.0000

δ1
1(A

1
1 − σA1

1
) shift 0.0053 0.00049 0.0000

η+− + ση+− shift 0.0171 0.00136 0.0000
η+− − ση+− shift 0.0017 0.00114 0.0000

δ0
0 max deviation 0.0111 0.00209 0.0000

δ1
1 max deviation 0.0053 0.00049 0.0000

η+− max deviation 0.0171 0.00136 0.0000

δ0
0 syst error assigned 0.0111 0.00209 0.0000

δ1
1 syst error assigned 0.0053 0.00000 0.0000

η+− syst error assigned 0.0171 0.00136 0.0000

Table 9.9: Effect of the uncertainty of Monte Carlo input constants on the final
result

and then a second average and standard deviation for the reconstructed fits was

computed for each given set (see tables 9.10 and 9.11 ). The shift in the average

value of a fit parameter can then be interpreted as a systematic error due to uncer-

tainty in event reconstruction. Note that because the reconstructed values are used

throughout analysis and event selection (i.e. the MCLIST values are only looked up

just before they are output to the likelihood fit program), both the MCLIST fit and

the reconstructed fit use an identical set of events. This ensures that the observed

parameter shifts were due solely to the choice of MCLIST or reconstructed values

for the phase space variables.

9.9 Summary of Systematic Errors

The complete list of systematic error study results is summarized in table 9.12.

Significant contributors to the net systematic error included the errors in the like-

lihood fit procedure, reconstruction of the phase space variable values, background
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Fit Ave (MCLIST) Fit Ave (Recon) Shift
MC g̃M1

a1
a2

GE1 g̃M1
a1
a2

GE1 |∆g̃M1 | |∆a1
a2

| |∆GE1
|

set 1 1.207 -0.7314 0.055 1.228 -0.7324 0.017 0.021 0.0010 0.038
set 2 1.056 -0.7728 0.053 1.078 -0.7694 0.016 0.022 0.0034 0.037
set 3 1.216 -0.7353 0.024 1.238 -0.7322 0.005 0.022 0.0031 0.019
set 4 1.071 -0.7565 0.023 1.094 -0.7523 0.003 0.023 0.0042 0.020

Max Dev - - - - - - 0.023 0.0042 0.038
Syst Err - - - - - - 0.023 0.0042 0.038

Table 9.10: Deviation between generated and reconstructed parameter values for
a given Monte Carlo file. Monte Carlo sample sets are the same as those used in
table 8.3.

Fit Ave (MCLIST) Fit Ave (Recon) σshift

MC σ<g̃M1> σ<
a1
a2

> σ<GE1> σ<g̃M1> σ<
a1
a2

> σ<GE1> g̃M1
a1
a2

GE1

1 0.005 0.0012 0.009 0.005 0.0009 0.004 0.007 0.0015 0.010
2 0.005 0.0016 0.009 0.005 0.0014 0.004 0.007 0.0021 0.010
3 0.010 0.0023 0.008 0.010 0.0021 0.003 0.014 0.0031 0.009
4 0.007 0.0018 0.008 0.007 0.0017 0.002 0.010 0.0025 0.008

Table 9.11: Statistical errors on the four trial Monte Carlo sets from table 9.10

effects, and analysis cut selections for the lab photon energy, kaon momentum, and

Z vertex.
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systematic σg̃M1
σa1

a2

σGE1

Baseline MC Bias 0.0093 0.0021 0.013
Kaon Momentum Slope 0.0031 0.0004 0.005

Background 0.0355 0.0067 0.045
Fusion χ2 0.0 0.0 0.0

Inner CsI Ring 0.0 0.0 0.0
Outer CsI Ring 0.0 0.0 0.0

P 2
t 0.012 0.0 0.0

pp0kine 0.0 0.0 0.0
PKaon 0.029 0.0 0.0

Track-γ sep 0.0 0.0 0.0
Vertex Z 0.034 0.0056 0.0

E
(lab)
γ 0.054 0.0077 0.0

pion E/p 0.0 0.0 0.0
Time (run #) 0.0 0.0 0.0

KS contamination 0.0 0.0 0.0
Likelihood Fitter 0.014 0.0056 0.024

(ω, cos θ) reconstruction 0.023 0.0042 0.038
η+− in MC 0.0171 0.0014 0.000

δ0
0 phase in MC 0.0111 0.0021 0.000

δ1
1 phase in MC 0.0053 0.0000 0.000

Net Systematic Error 0.087 0.014 0.065

Table 9.12: Summary of Systematic Errors



Chapter 10

Conclusion

The E1 contribution to the KL → π+π−γ decay proved to be beyond the sensitivity

of this measurement. As a result, the magnitude of the gE1 amplitude was reported

as the 90% confidence level upper limit

|gE1| < 0.14 (90% CL) (stat, syst combined).

This result and the companion UVa search1 for the E1 transition in the 1999 KL →

π+π−e+e− decay data [44] are the first experimentally measured upper limits for

this parameter.

In addition to the |gE1| upper limit, the two M1 form factor parameters, g̃M1

and a1

a2
, were also measured to a high degree of precision. The results for these

two parameters are as follows:

g̃M1 = 1.229 ± 0.035 (stat) ± 0.087 (syst)

a1

a2
= -0.733 ± 0.007 (stat) ± 0.014 (syst)

1completed in parallel with this analysis

133
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The measurement of a1

a2
agrees well with the result from the previously published

KTeV KL → π+π−γ decay measurement [45]. That result, obtained from ∼ 8600

events in the 1996 E832 data, produced the following value of a1

a2
:

a1

a2
= -0.737 ± 0.026 (stat) ± 0.022 (syst)

Moreover, both the g̃M1 and a1

a2
form factors are in very good agreement with

the numbers published by KTeV from the analysis of the closely related KL →

π+π−e+e− decay2 during the 1997 E799 experiment [46]:

g̃M1 = 1.35+0.20
−0.17 (stat) ± 0.04 (syst)

a1

a2
= -0.720 ± 0.028 (stat) ± 0.009 (syst)

2i.e. KL → π+π−γ∗, where γ∗ is a virtual photon



Appendix A

Expressing the π+π− Invariant
Mass as a Function of the Phase
Space Variable ω

To see that Mππ = Mππ(ω), where ω is defined to be the photon energy in the kaon

COM, we can invoke the invariance of the kaon 4-vector momentum P:

P µPµ = M2
K (A.1)

Expanding out the 4-vector dot product in terms of the three daughter particles,

(E+ + E− + Eγ)
2 −

[
~k + (~p+ + ~p−)

]2

= M2
K (A.2)

But, using eq 1.33 and the fact that (~p+ + ~p−) = 0 by definition in the π+π−

CM frame, equation A.2 reduces to

[
2

(
Mππ

2

)
+ Eγ

]2

− |~k|2 = M2
K (A.3)

If we now expand the first term and note that |~k| = Eγ this becomes

(M2
ππ + 2MππEγ + E2

γ) − E2
γ = M2

K (A.4)

Finally, plugging in equation 1.36 for Eγ and simplifying, equation A.4 becomes
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M2
ππ = M2

K − 2ωMK (A.5)

Or, equivalently,

ω =
M2

K − M2
ππ

2MK

(A.6)



Appendix B

The Statistical Error on a
Correlated Sample

Consider a situation where the data sample (≡ sample “S0”), which has N0 events

after all nominal cuts have been applied, has a particular cut tightened such that

a new sample (“S1”) with N1 final events (where N1 < N0) is produced. The

statistical uncertainty on the S1 sample (≡ σ1) is then calculated. However, the

subtlety here is that, since the S0 and S1 samples are correlated, the expected

statistical change in transforming from S0 to S1 must be less than σ1 .

To calculate the correct error on the shift of a value between the two correlated

samples (S0 and S1), we define a third set of events (“Sε”) such that Sε

⋂
S1 = 0

and hence Nε ≡ N0 − N1. This means that subsamples Sε and S1 are statistically

independent, and hence the standard relations will apply.

In other words, if a given fit parameter “α” is is measured to be α = α0 using

the nominal (S0) data events, but is measured to be α = α1 using the tighter-cut

S1 events, then there is a shift δ ≡ α0−α1, and we need to determine the statistical

error (σδ ) on this shift in terms of σ0 and σ1 . In order to do this, however, we

must first rewrite the shift δ in terms of the independent samples S1 and Sε.
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B.0.1 Expressing the Parameter Shift in Terms of Statisti-
cally Independent Samples

To do this, we define weights for each of the three samples such that

w0 =
1

σ2
0

(B.1a)

w1 =
1

σ2
1

(B.1b)

wε =
1

σ2
ε

(B.1c)

where

w0 = w1 + wε (B.2)

The nominal fit value α0 can then be expressed as a weighted average

α0 =
α1w1 + αεwε

w1 + wε

(B.3)

and hence the shift δ can be written

δ ≡ α0 − α1 =
α1w1 + αεwε

w1 + wε

− α1 (B.4)

Combining the two terms with a common denominator gives

δ =
α1w1 + αεwε − (α1w1 + α1wε)

w1 + wε

(B.5)

cancelling like terms, this reduces to

δ =
wε

w1 + wε

(αε − α1) (B.6)

Plugging equations B.1 back in for the weights, we get

δ =

(
1 +

σ2
ε

σ2
1

)−1

(αε − α1) (B.7)

But, from equations B.1 and B.2 we can also show that

σ2
ε =

σ2
0σ

2
1

σ2
1 − σ2

0

(B.8)
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So, substituting B.8 into B.7 and rearranging, we end up with

δ = γ(αε − α1) (B.9)

where

γ ≡ 1 − σ2
0

σ2
1

(B.10)

B.0.2 Calculation of the Error on the Shift

To find the error on the shift, we first note that the error ∆F for any arbitrary

F = F (A,B) can be written1

∆F =

[(
∂F

∂A

)2

(∆A)2 +

(
∂F

∂B

)2

(∆B)2

] 1
2

(B.11)

Therefore, for the specific case of δ = δ(αε, α1), given by equation B.9, we can write

σδ = γ
[
(1)(σ2

ε ) + (1)(σ2
1)

] 1
2 (B.12)

As an aside, note that γ was treated as a constant during the differentiation.

To justify this, recall that for any sample of size N, σ2
N = σ̄2

N
where σ̄ is the error

on one event.

Therefore σ2
0 = σ̄2

N0
and σ2

1 = σ̄2

N1
, and hence equation B.10 can be written

γ = 1 −
σ̄2

N0

σ̄2

N1

= 1 − N1

N0

(B.13)

which is a constant for any given N0 and N1.

We now use equations B.10 and B.8 to reexpress equation B.12 as

σδ =

(
1 − σ2

0

σ2
1

)[(
σ2

0σ
2
1

σ2
1 − σ2

0

)
+ σ2

1

] 1
2

(B.14)

1assuming that A and B are statistically independent variables
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Combining terms under a common denominator,

σδ =

(
σ2

1 − σ2
0

σ2
1

) (
σ2

1√
σ2

1 − σ2
0

)
(B.15)

which simplifies to our final expression of

σδ =
√

σ2
1 − σ2

0 (B.16)
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